

M3 Junction 9 Improvement

Scheme Number: TR010055

6.3 Environmental Statement Appendix 13.2 – Hydrogeological Risk Assessment (Rev 1) Clean

APFP Regulations 5(2)(a)

Planning Act 2008

Infrastructure Planning (Applications: Prescribed Forms and Procedure) Regulations 2009

Volume 6

18 August 2023

Infrastructure Planning

Planning Act 2008

The Infrastructure Planning (Applications: Prescribed Forms and Procedure) Regulations 2009

M3 Junction 9 Improvement Development Consent Order 202[x]

6.3 ENVIRONMENTAL STATEMENT - APPENDIX 13.2: HYDROGEOLOGICAL RISK ASSESSMENT

Regulation Number:	Regulation 5(2)(a)	
Planning Inspectorate Scheme Reference:	TR010055	
Application Document Reference:	6.3	
BIM Document Reference:	HE551511-VFK-EWE-X_XXXX_XX- RP-LE-0003	
Author:	M3 Junction 9 Improvement Project Team, National Highways	

Version	Date	Status of Version
Rev 0	November 2022	Application Submission
Rev 1	18 August 2023	Deadline 4 Submission

Contents

1	Introdu	uction	1
	1.1	Background	1
	1.2	Objectives	2
	1.3	Scope of work	2
	1.4	Competent expert	3
2	Draina	ge strategy and HEWRAT assessment	5
3	Baseli	ne conditions	9
	3.1	Site setting	9
	3.2	Geology	9
	3.3	Hydrology	23
	3.4	Hydrogeology	26
	3.5	Groundwater levels and flow	29
	3.6	Contaminated land and pollution events	40
	3.7	Groundwater quality	40
	3.8	Other potential receptors	44
4	Conce	ptual site model	56
	4.1	Sources	56
	4.2	Pathways	57
5	Groun	dwater Impact Assessment	60
	5.2	Road drainage	60
	5.3	Filled areas	60
6	Detaile	ed Quantitative Risk Assessment for EDBs	65
	6.1	Introduction	65
	6.2	Model Parameterisation	66
	6.3	Model Results	73
7	Conclu	usions and recommendations	79
	7.1	Conclusions	79
	7.2	Recommendations	80
8	Refere	nces	81

Figures

Figure 1.1 Site location and points of interest	4
Figure 2.1: Application boundary and locations of EDBs	
Figure 3.1: Bedrock geology	11
Figure 3.2: Superficial geology and artificial ground	13

Figure 3.3: Superficial geology - central area Figure 3.4: Local superficial geology superimposed on proposed drainage Figure 3.5: Historical landfill areas Figure 3.6: Surface water features Figure 3.7: Groundwater dip data from final day of installation works in mbgl Figure 3.8: Groundwater levels data from final day of installation works in mAOD Figure 3.9: Boreholes monitored for groundwater level Figure 3.10: Groundwater level in Application Boundary SI boreholes in the	19 22 25 30 31
Application Boundary (mAOD)	
Figure 3.11: Groundwater level in Application Boundary SI boreholes in metres belo ground level	
Figure 3.12: Application Boundary overlaid on the Hydrogeological map (Institute of	
Hydrological Sciences, 1979)	
Figure 3.13: Groundwater quality monitoring locations	
Figure 3.14: Licenced and private abstractions and SPZs	
Figure 3.15: Designated sites within 2 km	49

Tables

Table 2.1: Summary of attenuation structures Table 3.1: Stratigraphy of the bedrock geology in the Winchester (based on the BG Sheet 299 (British Geological Survey, 2002) and BGS memoir (Booth et al., 2008) Table 3.2: Summary of cavities hazard for each basin (from Appendix A of the Ground Investigation Report (Document Reference 7.11)) Table 3.3: Summary of lithologies encountered from Ground Investigation Report (Document Reference 7.11)	SS 9 15
Table 3.4 Historical landfill areas	
Table 3.5: Outline definitions of Source Protection Zones	-
Table 3.6: Calculated soil infiltration rates (from Table 9.5 in the Ground Investigati	
Report (Document Reference 7.11))	
Table 3.7: Groundwater level dip data during site investigation works in mAOD Table 3.8: Groundwater monitoring locations	
Table 3.9: Summary of groundwater levels (June 2019 to July 2020)	
Table 3.10: Approximate depth to groundwater at unlined EDBs	
Table 3.11: Pollution incidents within 2km (from Envirocheck, 2016)	40
Table 3.12: Summary of groundwater quality data (based on data in Controlled	
Waters Risk Assessment in Chapter 9 (Geology and Soils) of the ES (Document	
Reference 6.1))	
Table 3.13: Private water abstractions (within 2km of initial scheme boundary)	
Table 3.14: Designated Sites within 2km of the Application Boundary	
Table 3.15: Licenced groundwater and surface water abstractions	
Table 5.1: Summary of impacts	
Table 6.1 Infiltration rates	
Table 6.2: Source geometry	
Table 6.3: Chronic Source terms (from HEWRAT)	
Table 6.4: Acute source term concentrations (from HEWRAT – 95 th percentile (mg/ 69	1))
Table 6.5: Attenuation parameters	
Table 6.6: Solubility parameters	70

Table 6.7: Target concentrations	
Table 6.8: Hydrogeology parameters	71
Table 6.9: EDB2 Predicted concentrations (mg/l)	73
Table 6.10: EDB2 Predicted concentrations (mg/l)	74
Table 6.11: EDB2 Predicted concentrations (mg/l)	74
Table 6.12: EDB3B Predicted concentrations (mg/l)	74
Table 6.13: EDB3C Predicted concentrations (mg/l)	75
Table 6.14: Sensitivity run 1: fraction of organic carbon (mg/l) at 100 years	76
Table 6.15: Sensitivity run 2a: infiltration rate and unsaturated zone hydraulic	
conductivity (mg/l) at 100 years	77
Table 6.16: Sensitivity run 3: unsaturated zone thickness (mg/l) at 100 years	77

Appendices

Appendix A	HE551511-VFK-HDG-X_XXXX_XX-DR-CD-0512_Drainage Schematic
	Plan

- Appendix B HEWRAT screening assessments
- Appendix C HE551551-VFK-HGT-X_XXXX_XX-DR-GE-004 Exploratory hole location plan
- Appendix D HE551551-VFK-HGT-X_XXXX_XX-DR-GE-0020 Geological plan
- Appendix E RAM model files (electronic appendix)

1 Introduction

1.1 Background

- 1.1.1 The M3 Junction 9 Improvement Scheme (the Scheme) is located at Junction 9 of the M3 to the east of Winchester, running north to south, centred in the Winnall area and extending north to Headbourne Worthy (Figure 1.1). The Scheme includes proposed motorway modifications including the introduction of a new on/off slip road to both northbound and southbound sides of the M3, new link roads between the A33, A34, A272 and M3 roads and a new overhead gyratory above the M3 corridor.
- 1.1.2 Parts of the Scheme are located in a low spot of the M3, towards which a total of approximately 1.6km of the existing M3 corridor drains. A separate Motorway Upgrade Project is currently being constructed immediately to the south of the Scheme, which also drains towards the land within the Scheme's application boundary (Application Boundary).
- 1.1.3 West of the Application Boundary are commercial and light industrial land uses associated with the Wykeham Trade Park and Winnall Industrial Estate. Most of the surrounding non-highway land is used for agricultural purposes, with arable grassland to the north, and a number of fisheries located to the west.
- 1.1.4 The Application Boundary is located in a sensitive hydrogeological environmental setting, located adjacent to the River Itchen, which underlies the M3 and A34 in the north. The River is a designated Main River, with the associated floodplain designated as a Special Area of Conservation (SAC) and Site of Special Scientific Interest (SSSI). The Application Boundary is underlain by bedrock deposits of the White Chalk Subgroup, which are classified by the Environment Agency as a Principal Aquifer. Surrounding abstractions include thirty-one public abstractions, alongside nine abstractions for private water supplies within 2 km of the Scheme.
- 1.1.5 A ground investigation (GI) was previously undertaken, and additional works have been proposed by Stantec to provide supplementary information. Interpretation of the GI data is provided in the **Ground Investigation Report** (Document Reference 7.11).
- 1.1.6 The Drainage Strategy Report which forms **Appendix 13.1 (Drainage Strategy Report)** of the **Environmental Statement (ES) (Document Reference 6.3)** prepared for the planning application included a National Highways Water Risk Assessment Tool (HEWRAT) screening assessment. The results of the screening assessment are that all but one of the currently proposed Extended Detention Basins (EDT) present a 'medium risk' to groundwater and one has a high risk. LA113 (Road drainage and the water environment) (Highways England, 2020) states that where (HEWRAT) indicates a groundwater risk assessment is medium or high, a detailed assessment should be completed by a competent expert with the degree of detail being appropriate to the medium or high result.

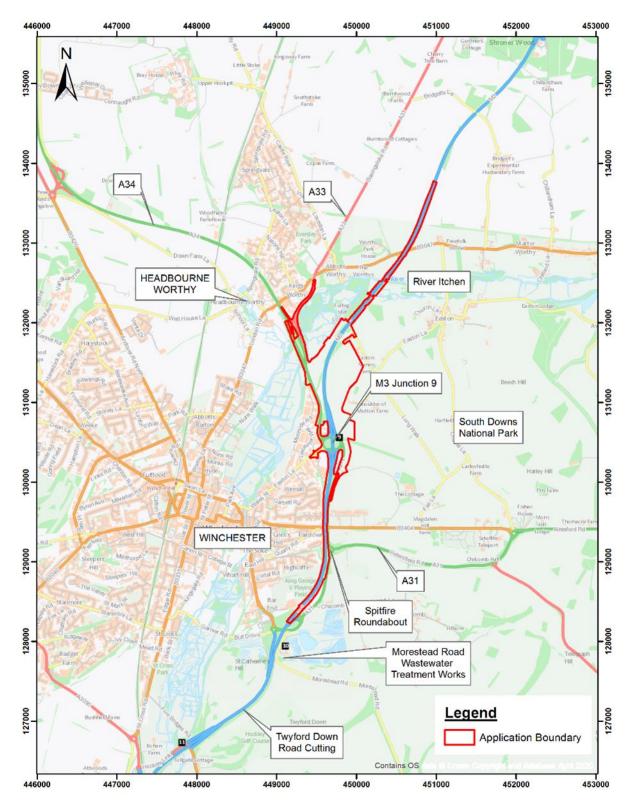
- 1.1.7 A large area requires to be built up in the east of the Application Boundary (as shown in yellow on Drawing HE551511-VFK-HGN-X_XXXX_XX-SK-CH-0004_P03). It is expected that much of the material excavated from elsewhere in the Scheme will be used to fill this eastern area.
- 1.1.8 Piling will be undertaken as part of the works, and a piling risk assessment will be carried out prior to works commencing, in accordance with Environment Agency methodology. This risk assessment will consider impacts on the water environment.

1.2 Objectives

- 1.2.1 In its 'M3 Junction 9 Improvement Environmental Impact Assessment (EIA) Scoping Notification and Consultation Reg 11' response to the Scoping Report the Environment Agency indicated concern, given the sensitivity of the groundwater environment beneath the Application Boundary.
- 1.2.2 Further comments were received from the Environment Agency in response to the Preliminary Environmental Information Report (PEIR). The Environment Agency states that its primary concern regarding the Scheme relates to the protection of groundwater, and protection / enhancement of the ecological balance and species within the River Itchen and surrounding areas.
- 1.2.3 This document has been prepared on behalf of National Highways to provide the appropriate assessment for potential impacts to groundwater from the Scheme and, in particular, to address the concerns raised by the Environment Agency in its consultation responses.

1.3 Scope of work

- 1.3.1 This report presents a Hydrogeological Risk Assessment (HgRA) to identify the significance of risks to the Chalk Aquifer and River Itchen. This HgRA is based on government guidelines appropriate to the geological and hydrogeological environment, which promote the protection of water bodies and related receptors from potential impact of development activities. Specific guidance referenced when undertaking the assessment include:
 - Design Manual for Roads and Bridges (DMRB) LA 113 Road drainage and the water environment (Highways England, 2020)
 - The Environment Agency's approach to groundwater protection (Environment Agency, 2018)
 - Remedial Targets Methodology for contaminated land (Environment Agency, 2006)
 - Contaminated Land Risk Assessment, A Guide to Good Practice (CIRIA, 2021)
 - Guidance on land contamination risk management (Environment Agency, 2021)


1.3.2 The scope of work undertaken for this HgRA includes the following:

- Review of the baseline geology and hydrogeology for the Application Boundary and surrounding area
- Identification of receptors and assessment of potential impacts
- Recommendations for appropriate monitoring and mitigation measures
- Preparation of a Detailed Quantitative Risk Assessment (DQRA) for risks that are qualitatively assessed as significant

1.4 Competent expert

1.4.1 This report has been prepared by Stantec's Robert Sears, who is a hydrogeologist of over 30 years' experience. Robert is a Fellow of the Geological Society and is a Chartered Geologist.

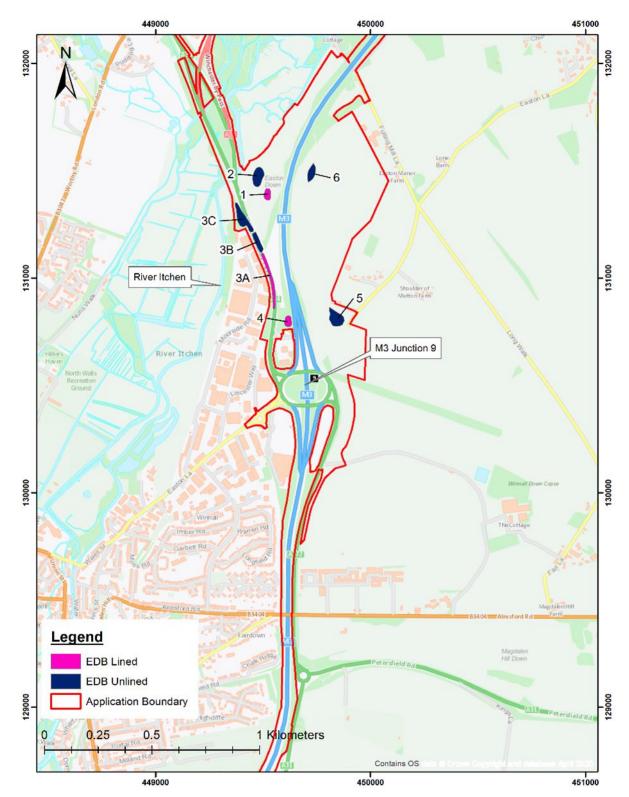
Figure 1.1 Site location and points of interest

2 Drainage strategy and HEWRAT assessment

- 2.1.1 The Scheme's drainage strategy is described in **Appendix 13.1 (Drainage Strategy Report)** of the **ES (Document Reference 6.3).** The design approach is to install new gravity drainage for all new carriageway, or to replace existing highway drainage that is being built over by new impermeable highway, such as hardening of the central reserve and lane widenings.
- 2.1.2 In areas where existing carriageway is being overlaid only, then existing highway drainage is retained.
- 2.1.3 Areas of local, minor lane widenings proposed remote from the main works, are drained to existing highway drainage, which is modified, where required, to maintain existing discharge rates and no-flooding capacity.
- 2.1.4 All new drainage conveys run-off to extended detention basins (EDBs), which infiltrate to ground where the HEWRAT assessment of risk to groundwater, allows. These new EDBs are shown in **Figure 2.1**.
- 2.1.5 Runoff volumes are attenuated in the EDBs as far as space and acceptable draw-down times allow. Runoff volumes that are unable to drain to ground within a practical time period are discharged to the River Itchen.
- 2.1.6 Treatment of run-off before discharge is proposed as follows:
 - Over-the-edge drainage of run-off from carriageways on embankments to filter strips and to infiltration ditches
 - Collection of run-off at carriageway edges in linear drains, gullies or filter drains, which is piped to the following:
 - Attenuation and Primary Settlement treatment in filtration forebays and unplanted, lined EDBs
 - Attenuation, Secondary Settlement and Filtration treatment in vegetated EDBs, containing both wet and dry habitats
 - Tertiary treatment in a grassed swale prior to discharge to the River Itchen
- 2.1.7 The only areas where existing linear infiltration drainage, or sealed drainage, is retained (and enhanced where necessary to limit flooding), will be the A33/A34 carriageway to the north of the River Itchen (above northing 131500) and M3 carriageway (above northing 131500). Both these retained areas are proposed to discharge to the River Itchen via existing open ditches or filter trenches.
- 2.1.8 The proposed drainage design is shown on Drawing HE551511-VFK-HDG-X_XXX_XX-DR-CD-0512 which is included here as **Appendix A**. A summary of the EDBs is included in **Table 2.1** and they are also labelled and shown on Figure 2.1.

hways

Basin ref.	Туре	Source	Inflows	Outfalls
1	EDB (lined)	Highway	From highway	To EDB 2
2	EDB (unlined)	Highway	From highway and EDB 1	To ground and river
3A	EDB (lined)	Highway	From highway	To EDB3B
3B	EDB (unlined)	Highway	From highway and EDB3A	To ground and EDB 3C
3C	EDB (unlined)	Highway	From highway and EDB3B	To ground and river via swale
4	EDB (lined)	Highway	From highway	To EDB 3A
5	EDB (unlined)	Rural overland flow and Highway runoff	From highway and rural land to east	To ground
6	EDB (unlined)	Rural overland flow	From rural land to east	To ground


Table 2.1: Summary of attenuation structures

- 2.1.9 Each EDB has been assessed using the HEWRAT. As detailed in the HEWRAT Help Guide (Highways England, 2015), the tool considers the following potential pollutants:
 - Acute pollution impacts associated with copper and zinc
 - Chronic pollution impacts associated with the following determinants in sediments: total copper, zinc, cadmium and total polycyclic aromatic hydrocarbons (PAH), including specific PAH's: pyrene, fluoranthene, anthracene, and phenanthrene
- 2.1.10 For groundwater risk, HEWRAT uses an empirical approach taking into account the following factors:
 - Traffic flow rate
 - Rainfall rate
 - Ratio of drainage area of road to active surface area of infiltration device

- Infiltration method
- Unsaturated zone thickness
- Flow Type
- Unsaturated zone clay content
- Fraction of organic carbon
- Unsaturated zone soil pH
- 2.1.11 For each of these parameters, a component score between 1 and 3 is assigned and this is then multiplied by a weighting factor for that parameter to provide a score. This process is repeated for all parameters and the scores are then summed to provide an overall risk score.
- 2.1.12 The HEWRAT screening assessments for each of the EDBs are presented in **Appendix B**. For the EDBs that discharge to ground, the highest scores (high risk) are derived where the unsaturated zone is thin (<5 m) and the flow type is dominated by fractures and fissures. The basins that get medium risk scores are those which either:
 - a) Have a thicker unsaturated zone over fractures and fissures, or
 - b) Have intergranular flow through superficial deposits and / or the unsaturated zone is thicker

3 Baseline conditions

3.1 Site setting

3.1.1 The Application Boundary is located in the River Itchen valley. The elevation in the west of the Application Boundary is approximately 40m above ordnance datum (mAOD) and the land rises to the east up to a maximum of approximately 75mAOD.

3.2 Geology

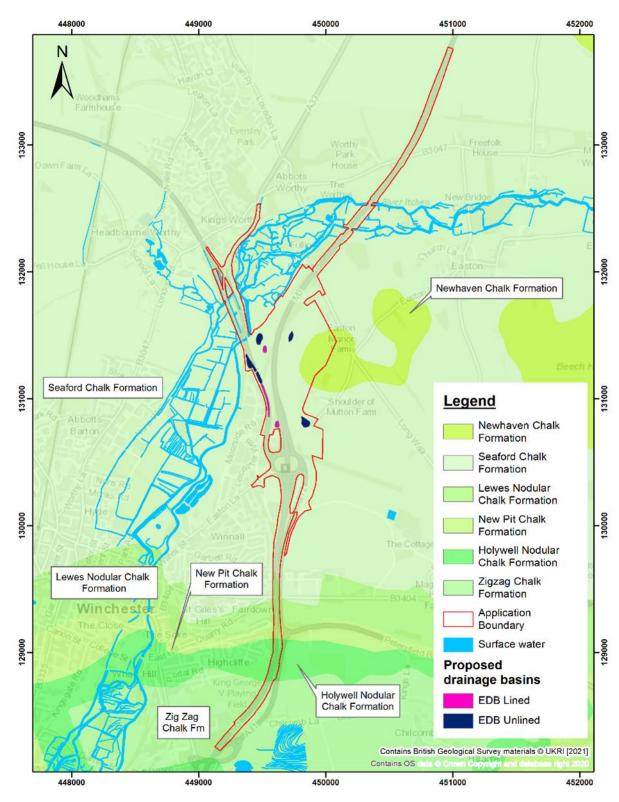
Regional geology

Bedrock

- 3.2.1 The British Geological Survey (BGS) indicates that the bedrock geology underlying the Application Boundary comprises the White Chalk Subgroup and the upper part of the Grey Chalk Formation of the Late Cretaceous era (**Figure 3.1**). The stratigraphy of the rock units in the Application Boundary and surrounding area are summarised in **Table 3.1**. In the Application Boundary, the five lower formations of the White Chalk outcrop, with the Seaford Chalk Formation outcropping across the majority of the Application Boundary, including the central area around Junction 9 itself and the River Itchen. The Seaford Chalk Formation typically consists of firm white chalk, with nodular and tabular flint seams. Underlying the Seaford Chalk are the Lewes Nodular Chalk Formation, New Pit Chalk Formation, Holywell Nodular Chalk Formation (all of the White Chalk) and Zig Zag Chalk Formation (Grey Chalk Subgroup). These units crop out to the south of the Spitfire Roundabout (A31 and A272). Above the Seaford Chalk Formation is the Newhaven Chalk Formation, which outcrops in small areas in the north of the Application Boundary.
- 3.2.2 The Application Boundary lies on the Winchester-East Meon Anticline, an east to west trending fold. In the main central area of the Application Boundary, the strata dip 5-10 degrees to the north. In the south of the Application Boundary, south of the Spitfire Roundabout, the strata dip 4 degrees to the south.

Table 3.1: Stratigraphy of the bedrock geology in the Winchester (based on the BGS Sheet 299 (British Geological Survey, 2002) and BGS memoir (Booth et al., 2008)

	Name	Thickness	Description	Present at surface at Application Boundary?
Chalk group	Portsdown Chalk Formation	5	White chalk with marl beds and a few flint bands	No
White (Sub-gi	Culver Chalk Formation	50-70	White chalk with flints and many thin marl beds. Comprises the Tarrant Chalk	No


M3 Junction 9 Improvement

6.3 Environmental Statement - Appendix 13.2: Hydrogeological Risk Assessment

	Name	Thickness	Description	Present at surface at Application Boundary?
			Member and the Spetisbury Chalk Member.	
	Newhaven Chalk Formation	40-70	Soft to medium hard, white chalk with flints and many thin marl beds (20-70 mm thick).	Yes – small areas in the north
	Seaford Chalk Formation	40-65	Soft white chalk with seams of large nodular and semi-tabular flint. Commonly blocky.	Yes – majority of central area
	Lewes Nodular Chalk Formation	55-65	White, interbedded hard, nodular chalks with soft- medium chalks and marls. Contains persistent seams of flints near the base. Conjugate fractures. Contains karstic features in the Twyford Down Cutting (approx. 500 m south of Application Boundary – See Figure 1.1 Site location and points of interest) including a partially sediment-filled paleaocave system and calcreted karst.	Yes
	New Pit Chalk Formation	40-45	White chalk with many regularly spaced marl beds. Massive and medium hard. Flint beds in the upper half of the succession. Conjugate fractures.	Yes
	Holywell Nodular Chalk Formation	25-30	Hard, nodular chalk with some shelly beds. Characterised by shell debris. Includes Melbourn Rock (c. 5 m) and Plenus Marls (1-3 m) at base.	Yes
Grey Chalk Sub- group	Zig Zag Chalk Formation			Yes

Figure 3.1: Bedrock geology

Superficial deposits

3.2.3 Superficial deposits are shown on **Figure 3.2** and **Figure 3.3**. The majority of the Application Boundary is not underlain by superficial deposits; however, in

the north of the Application Boundary, the M3 and A34 is underlain by alluvium and head deposits. Alluvium deposits of the River Itchen form a band that is crossed by the M3 and A34, within the Application Boundary, and also is located to the west of the Application Boundary. Alluvium is typically formed of unconsolidated detrital material deposited by a river or stream and comprises sorted or semi-sorted sediment within the riverbed or floodplain. This can have a variable lithology depending on the river environment and may comprise clay, silt, sand, peat or gravel. Borehole data available from the British Geological Survey (BGS) indicate that the Alluvium comprises 1 to 1.5 m of peaty silts and clays above 4.5 to 5.5 m of dense gravels (Booth, et al., 2008).

- 3.2.4 Head deposits are located beneath the north-eastern part of the Application Boundary beneath the M3 and in smaller lateral bands located north and south of the of the M3 Junction 9 roundabout (see **Figure 3.2**). To the northeast an area of the M3 crosses through superficial deposits of Head 1; this comprises clay, silt, sand and gravel, often poorly sorted and poorly stratified, formed mostly by solifluction and / or hillwash and soil creep. The smaller bands of Head are composed of clay, silt, sand and gravel that is poorly sorted and poorly stratified containing angular rock debris and clayey hillwash and soil creep that is mantling a hillslope and deposited by solifluction and gelifluction processes.
- 3.2.5 Except for a small area of Basin 3A (lined) and approximately half of Basin 5 (unlined), none of the other drainage features are shown by the BGS mapping to be underlain by superficial deposits (see **Figure 3.3**).

Figure 3.2: Superficial geology and artificial ground

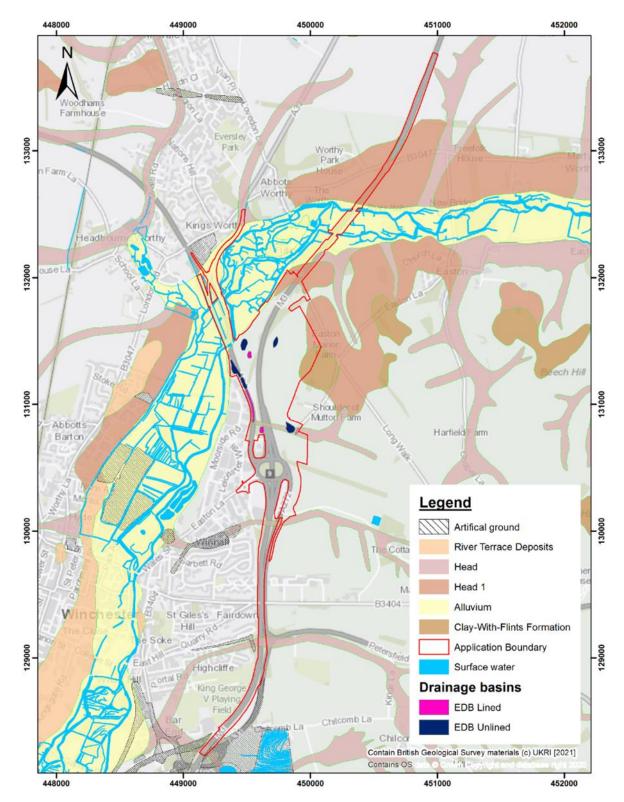
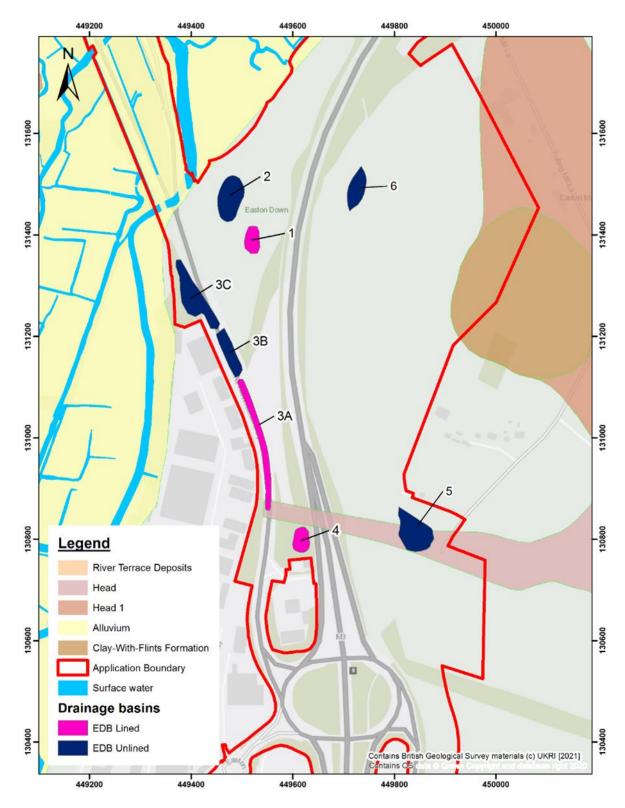



Figure 3.3: Superficial geology - central area

Soils

3.2.6 Soilscapes classifies the majority of the soils within the Application Boundary as being freely draining, shallow lime-rich soils over chalk limestone. The

agricultural land classification and soil resources report prepared for the Scheme by Reading Agricultural Consultants identifies these as being soils of the Andover 1 association (Reading Agricultural Consultants, 2021). Towards the northeast of the Application Boundary the soils become fen peat soils, classified as being Charity 2 association, which drain to local groundwater.

Underground cavities

- 3.2.7 A Cavities Risk Assessment has been undertaken as part of the **Ground Investigation Report (Document Reference 7.11).** There was one natural cavity record within 500 m of the Application Boundary, which was 10 solution pipes on the course of the River Itchen.
- 3.2.8 A summary of the Hazard ratings for each basin is given in **Table 3.2** below. The Hazard rating represents the likelihood for cavities to be present. Most basins are located in an area of Moderate-Low hazard for both natural and mining cavities which means they may occur but are unlikely. A Moderate hazard rating means that they may occur, but probably at a single location.

Basin	Natural cavity hazard	Mining cavity hazard
1	Moderate-Low	Moderate-Low
2	Moderate-Low	Moderate-Low
3A	Moderate-Low and Moderate	Moderate-Low
3B	Moderate-Low	Moderate-Low
3C	Moderate-Low	Low and Moderate-Low
4	Moderate-Low and Moderate (small area)	Moderate-Low
5	Moderate and Moderate-Low (small area)	Moderate-Low
6	Moderate-Low	Moderate-Low

Table 3.2: Summary of cavities hazard for each basin (from Appendix A of the Ground Investigation Report (Document Reference 7.11))

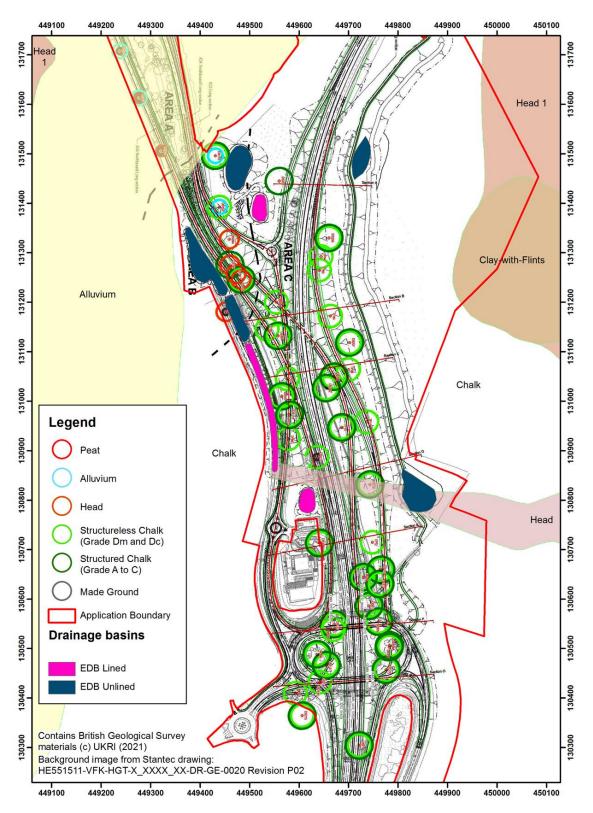
Encountered geology

- 3.2.9 The GI information is presented and reviewed in the **Ground Investigation Report (Document Reference 7.11).** A summary of the factual report of this investigation is given in **Table 3.3**. The borehole locations are shown in **Appendix C**.
- 3.2.10 The local superficial geology is shown in **Appendix D** and overlain onto Inset **Figure 3.4**.
- 3.2.11 In the central area around the drainage features, the Application Boundary is typically underlain by topsoil, Made Ground / Engineered Fill and Seaford Chalk Formation. This is in broad agreement with the publicly available BGS data.

In the central area of the Application Boundary where the EDBs are proposed, the superficial deposits extend further eastwards than indicated by BGS mapping. A summary is given below of the likely superficial geology at each of the EDBs, although it is noted that there is insufficient borehole coverage to make a detailed assessment.

- EDB1. Borehole DS203 shows that there is no superficial geology present close to this location. The EDB drains directly onto structured chalk.
- EDB2. Borehole DS112 suggests that alluvial deposits may be present under this EDB to a depth of 5 m, which is in turn underlain by structureless chalk to a depth of 6.23 m followed by structured chalk.
- EDB3A. Boreholes DS107 and DS114 and trial pits TP07 and TP09 are located to the east of this EDB. The trial pits show structureless chalk whilst the boreholes show structureless chalk to a depth of 1.2 m underlain by structured chalk.
- EDB3B. Borehole WS08 is located immediately west of the northern end of this EDB. This borehole recorded Made Ground to a depth of 5.11 m comprising predominantly white chalk recovered as silty clay with fractured flint. This is underlain by 1.89 m of head comprising a sandy, gravelly, silty clay. The base of the head deposits was not penetrated.
- EDB3C. Boreholes DS104 and DS105 and trial pit TP02 are located east of the southern end of this EDB. TP02 recorded 0.3 m of made ground comprising clayey sand. This is underlain by 3.7 m of alluvium to the base of the pit. The alluvium predominantly comprised a silty or sandy, gravelly clay. Borehole DS104 encountered made ground to 0.3 m, comprising clayey sand. This is underlain by 8.2 m of alluvium to the base of the borehole. The alluvium comprised a sandy gravelly clay with interbedded gravel. Borehole DS105 encountered made ground to 0.35 m, comprising clayey gravelly sand. This is underlain by 5.65 m of head which comprised a gravelly, silty clay. This is underlain by 2 m of structureless chalk followed by structured chalk.
- EDB4. There are no GI boreholes adjacent to this EDB. The nearest boreholes are DS217 and DS108. Both of these record structureless chalk overlying structured chalk. Given this EDBs location further to the east, it is likely that it is underlain by chalk.
- EDB5 and EDB6. No GI data in the vicinity of these EDBs, but underlying geology is likely to be chalk.

Table 3.3: Summary of lithologies encountered from Ground Investigation Report (Document Reference 7.11)


Layer	Range of depths encountered (m)	Location and brief description	
Topsoil	0.0 - 0.45	Encountered in 16 out of 53 boreholes. Grass over light- to dark- brown slightly gravelly clayey sand or sandy gravelly clay.	
Made ground / Engineered fill	0.0 - 11.35	Varied across the Application Boundary, but typically comprised tarmac, sub-base, reworked chalk, gravelly sandy clay with flint cobbles, varying concrete and brick gravel content. It is noted in the Ground Investigation Report (Document Reference 7.11) that in some areas the strata identified by Soils Limited as Made Ground may also be Engineered Fill. Engineered Fill is typically structureless chalk recovered as slightly clayey silty sandy gravel. The Engineered Fill is likely to originate from the construction of the M3, A33 and A34.	
Alluvium / Head	0.0m – 9.15,	Located in the north of the investigation area along the A34. Comprising clayey, sandy gravel with low flint cobble content, clayey gravelly sand or silty, sandy, gravelly clay. In places deposits comprised solely sands, gravels and cobbles, with the fines assumed to have been washed away. Peat was encountered as part of the alluvial deposits; this comprised firm brown mottled grey silty slightly sandy gravelly fibrous peat, with fragments of black organic material or plastic dark brown pseudofibrous peat. The Ground Investigation Report (Document Reference 7.11) has reclassified the Alluvium identified by Soils Limited as Head at some locations.	
Head	0.0 and 7.0	Located in the north of the Scheme and comprising dark brown slightly clayey gravelly sand and firm to stiff silty sandy gravelly clay. Often interbedded cohesive and granular horizons.	
Seaford Chalk	0.0 and 30.45 (base of borehole)	Consists primarily of very weak, low density white chalk recovered as gravelly silty clay; structureless silty gravel and cobbles (CIRIA Grade Dm or Dc); structureless chalk composed of slightly sandy silty gravel or clay; weak low	

M3 Junction 9 Improvement

6.3 Environmental Statement - Appendix 13.2: Hydrogeological Risk Assessment

Layer	Range of depths encountered (m)	Location and brief description	
		density white chalk (CIRIA Grade A3 to C5) or very weak to weak low to medium density speckled chalk (CIRIA Grades A to C). Rare cobbles and gravel comprised of angular flints were also present. It is noted in the Ground Investigation Report (Document Reference 7.11) that the classification of these chalks as structured or unstructured may not be consistent.	

Figure 3.4: Local superficial geology superimposed on proposed drainage

national

highways

Soil contamination

- 3.2.12 Geoenvironmental testing was carried out during the GI as detailed in the **Ground Investigation Report (Document Reference 7.11)** to determine the concentrations of contaminants of selected soil and groundwater samples. The testing suite comprised a range of heavy metals, inorganic and organic compounds, and for soils an asbestos screen.
- 3.2.13 The Ground Investigation Report (Document Reference 7.11) states that the vast majority of the soil results are below the selected assessment criteria. The exception to this is one sample out of the 126 samples tested which indicated a marginal exceedance of the Public Open Space assessment criteria for Beryllium (2.3mg/kg compared to an assessment criteria of 2.2 mg/kg). The Ground Investigation Report (Document Reference 7.11) does not consider this significant when compared to the Generic Assessment Criteria.
- 3.2.14 In addition, waste acceptance criteria (WAC) testing of 10 samples of near surface material was undertaken to allow a preliminary determination of the waste characterisation of any material to be disposed of to landfill. The results of the WAC tests analysis classify the near surface material tested as appropriate for disposal at an Inert Waste Landfill.

Infilled ground/landfilling and historical land use

- 3.2.15 Infilled ground, landfilling and other historical land uses may be sources of contamination to the water environment.
- 3.2.16 There are 13 historical landfill areas shown on Environment Agency mapping data in the vicinity of the Application Boundary. The information is summarised in **Table 3.4** and the locations are shown on Inset **Figure 3.5**. These data show there are four historical landfills within or directly adjacent to the Application Boundary:

Name	Waste type	Dates active	Distance from site	Comments
Spitfire Link	No further information		On site	Soil Limited (2020) drilled six exploratory boreholes within or adjacent to the mapped boundary. No records of waste are indicated on borehole logs.
King George V Playing Fields	No further information		On site and adjacent to east	
Land adjacent to Winchester Bypass	Inert	1967-1968	Adjacent to north	Timings suggest related to Winchester Bypass widening.

Table 3.4 Historical landfill areas

M3 Junction 9 Improvement

6.3 Environmental Statement - Appendix 13.2: Hydrogeological Risk Assessment

Name	Waste type	Dates active	Distance from site	Comments
				Controlled Waters Risk Assessment in Chapter 9 (Geology and Soils) of the ES (Document Reference 6.1)
Land Between Old Newbury Railway and A33	No further information		Adjacent to west	Very small so likely to have been a commercial operation. Controlled Waters Risk Assessment Chapter 9 (Geology and Soils) of the ES (Document Reference 6.1)
Land At Morestead Wastewater Treatment Works	Inert	1993-2001	30 m southeast	-
Winnall	Commercial and household	1969-	220 m to west	-
Sewage Farm	Commercial and household	Not provided	490 m to south	-
Railway Cutting (near to Winnall landfill)	Inert and commercial	1978-	530 m west	-
Nun's Road	Inert and Industrial	1963-	730 m to west	-
Railway cutting (two parts)	No further information		850 m to north	-
Alresford Drove	Commercial and household	Not provided	1 km northwest	-
Vesonia	Inert and commercial	1979-	1 km east	-
Garnier Road Pumping Station	Commercial and household	1910-	1.1 km west	-

3.2.17 A Controlled Waters risk assessment in **Chapter 9 (Geology and Soils)** of the **ES (Document Reference 6.1**) has identified a number of other potential

sources of contamination that are relevant to this study. These comprise a former gas works and iron works, railways, and land of mixed industrial use within or close to the Application Boundary that may also be a source of contaminants in soils.

national

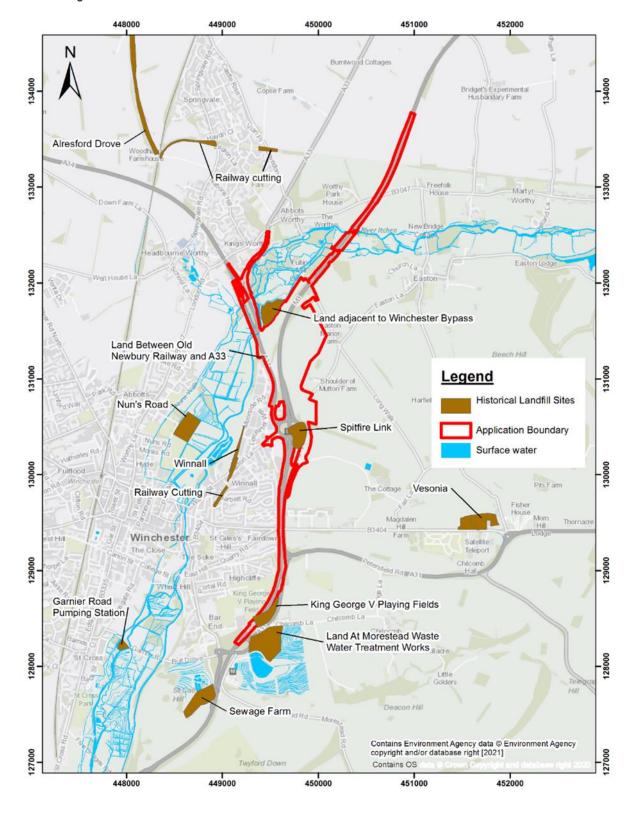


Figure 3.5: Historical landfill areas

3.3 Hydrology

Rainfall

3.3.1 The Standard Average Annual Rainfall (SAAR) for the area around the Itchen at Easton River monitoring point (42016) is 848 mm (NRFA, 2021).

Surface water features

3.3.2 Surface water features in the vicinity of the Application Boundary are shown on **Figure 3.6**.

Watercourses

- 3.3.3 The River Itchen flows east to west across the northern part of the Application Boundary and then flows south to the west of the Application Boundary approximately parallel with the M3. The River Itchen is a chalk stream comprising a number of anabranches in the area around Winchester and the Application Boundary. There is also a network of ditches that are connected with the Itchen that follow the boundaries of the former water meadows within the Itchen floodplain. The Itchen is a designated Main River, with the associated floodplain designated as a SAC and SSSI. Much of the floodplain to the west of the central part of the Application Boundary is managed as the Winnall Moors Local Nature Reserve.
- 3.3.4 According to the National River Flow Archive the mean flow data of the River Itchen upstream of the Application Boundary (location 42016 Itchen at Easton) is 4.239 m3/s. Downstream of the Application Boundary (location 42010 Itchen at Highbridge and Allbrook Total) mean flow is 5.539 m3/s, implying that the River gains within the Application Boundary. Both locations show evidence of substantial surface and groundwater abstraction and the presence of cress beds and fish farms. The baseflow index (BFIHOST) at the River Itchen at Easton is 0.95, indicating that it almost entirely groundwater fed.
- 3.3.5 To the west of the River Itchen is Nun's Walk Stream, which flows parallel to the track/road of the same name and the Itchen. This is also a designated Main River. Ordnance Survey mapping indicates that Nun's Walk Stream starts around springs at Headbourne Worthy in the north and flows southwest parallel with the Itchen on a straight course and joins with an Itchen anabranch at the north end of Park Road, Winchester, south of the River Park Leisure Centre, approximately 2.5 km to the south.
- 3.3.6 In the surrounding area, there are very few water courses or water features other than the River Itchen that lie on the Chalk, and this is generally due to the high secondary porosity and permeability of the Chalk allowing rainfall to infiltrate and recharge the aquifer directly.

Waterbodies

3.3.7 There are a number of water bodies that fall within the course of the River Itchen. There are three waterbodies located on the eastern side of the Itchen

south of the Junction 9 roundabout. There is also a square pond at Winnall Down Farm (125 m from the Application Boundary, that given its shape is very likely to be manmade, and it appears from satellite imagery that it is lined.

- 3.3.8 To the south around St Catherine's Hill and Chilcomb there are many effluent dispersal trenches, tanks and a lagoon forming part of the Morestead Road Wastewaster Treatment Works. These features are both to the west and east of the M3.
- 3.3.9 There are number of fisheries and water cress ponds in the surrounding area that rely on chalk-fed water features, such as those in Headbourne Worthy, 480 m to the west of the Application Boundary. These ponds are fed by springs from the chalk. There are also watercress ponds around New Alresford, 8 km to the east of the Application Boundary and upstream on the River Itchen.

447000 448000 450000 451000 449000 452000 453000 N Lined pool and short ditches at Copse Farm 134000 134000 Roadside drainage ditch Springs and Watercress beds 133000 133000 at Headbourne Worthy Marty Ditch at base of railway embankment 132000 132000 **River Itchen** 131000 131000 Nun's Walk Stream Lined pool at Winnall Down Farm Ornamental pools in 130000 130000 Peninsula Square (lined) Winchester 129000 129000 Road drainage ditch on Percy Hobbs Roundabout 128000 128000 Legend Effluent dispersal trenches, **Drainage basins** tanks and lagoon at Morestead Road WWTW EDB Lined (both sides of M3) 127000 127000 EDB Unlined Application Boundary Surface water Contain British Geological Survey materials (c) UKRI [2021] Contains OS 26000 449000 448000 450000 451000 447000 452000 453000 Surface water quality

Figure 3.6: Surface water features

3.3.10 No surface water samples were taken as part of the site investigation undertaken by Soils Limited in 2019.

3.4 Hydrogeology

Groundwater classifications and systems

- 3.4.1 The Alluvium underlying the north of the Application Boundary is classified by the Environment Agency as a Secondary A aquifer, meaning it is a formed of permeable layers capable of supporting water supplies at a local rather than strategic scale, and can provide an important source of base flow to rivers.
- 3.4.2 The Head deposits are classified as Secondary Undifferentiated aquifer. These are layers for which it has not been possible to determine a permeability due to the variable characteristics of the rock type.
- 3.4.3 The Chalk Subgroup is classified by the Environment Agency as a Principal Aquifer, due to its high fracture permeability, and as such it supports water supply and river base flow on a strategic scale. The Chalk is a dual porosity aquifer with rapid flow occurring through fracture networks and slower flow through the porous matrix.
- 3.4.4 The top of the Chalk is logged as structureless chalk. Structureless chalk tends to have fewer fissures and fractures and the clayey matrix is often a barrier to groundwater flow.
- 3.4.5 The Groundwater Vulnerability maps from the Environment Agency indicates that the groundwater is of High vulnerability to pollutant discharge at the surface in areas without superficial cover and Moderate-High vulnerability in areas with superficial cover.

Groundwater Source Protection Zones (SPZs)

3.4.6 The Application Boundary lies within two overlapping groundwater Source Protection Zones (SPZ); which relate to groundwater sources that are used for public drinking water supply. The definitions of each zone are described in **Table 3.5** below. There is also another SPZ to the northwest and one to the south. The SPZs are shown on **Figure 3.14**.

Zone	Outline definition (from Environment Agency website – (Environment Agency, 2019)		
Zone 1 (Inner Zone)	Defined by a 50-day travel time from any point below the water table to the source. This zone has a minimum radius of 50 metres.		
Zone 2 (Outer Zone)	Defined by a 400-day travel time from a point below the water table. This zone has a minimum radius of 250 or 500 metres around the source, depending on the size of the abstraction. Older SPZs may have used a different methodology.		

 Table 3.5: Outline definitions of Source Protection Zones

6.3 Environmental Statement - Appendix 13.2: Hydrogeological Risk Assessment

Zone	Outline definition (from Environment Agency website – (Environment Agency, 2019)		
Zone 3 (Total Catchment)	Defined as the area around a source within which all groundwater recharge is presumed to be discharged at the source.		

- 3.4.7 The SPZ in the northeast of the Application Boundary is for two Southern Water public water supply boreholes near Easton and lies mostly along the M3 north of the Application Boundary¹. Where the Application Boundary is within the SPZ it is mostly in Zone 1, with the northernmost area in Zone 2 (c. 860 m of M3).
- 3.4.8 There is also an SPZ approximately 450 m to the northwest of the Application Boundary associated with the Headbourne Worthy Watercress Beds. These beds are fed by springs. The area closest to the Application Boundary is in Zone 1 with the 'tail' of Zone 2 and 3 spreading to the northwest away from the Application Boundary.
- 3.4.9 There is another SPZ 1 km southeast of the Application Boundary which is related to further Southern Water public water supply boreholes.
- 3.4.10 The Drinking Water Groundwater Safeguard Zone (DWGSZ) for the River Itchen Chalk covers Zone 1 and 2 of the SPZ.

Aquifer properties

- 3.4.11 The Chalk exhibits both matrix flow and fracture flow and the Seaford Chalk Formation has regular orthogonal joint sets (Allen, *et al.*, 1997). The Seaford Chalk usually has high storage although not always high permeability due to the narrow apertures of the fractures (Allen, et al., 1997). Numerous fractures are identified in the chalk in borehole logs.
- 3.4.12 It is common for there to be higher permeability in chalk river valleys. Palaeogene sediments in river valleys tend to be quite acidic, enhancing dissolution (Allen, et al., 1997). Transmissivities in the Hampshire Basin area are reported in Allen *et al.*, (1997) from 0.55 to 29,000 m²/d with a geometric mean of 1,600 m²/d. Allen *et al.* (1997) note that these values are high due to higher number of tests near to rivers. Transmissivity values of 1,000 m²/d are common in the valley areas. The Candover valley, a tributary of the Itchen to the east, has transmissivities of 1,000 3,000 m²/d and a storage coefficient of 0.01-0.03. Folding tends to enhance fracturing of rocks. However, it also notes that in the axes of anticlines, such as is found here, aquifer properties are thought to be less well developed, with groundwater mounds and lower transmissivities of 100 m²/d. (Entec, 2002) within (WPK, 2007) suggest transmissivities in the Winchester Anticline are 100-600 m²/d.

¹ Note that co-ordinates are not available for the Itchen Valley PWS's near Easton.

- 3.4.13 At the Itchen Valley (Easton) Public Water Supply (PWS) to the north of the Application Boundary, transmissivities of 2,400 and 4,700 m²/d have been calculated from pumping tests (Environment Agency, 1997 within WPK, 2007).
- 3.4.14 If we assume that the transmissivity is concentrated in the top 50 m of the Chalk, then a transmissivity of 1,000 m²/d equates to a hydraulic conductivity of 20 m/d. Below 50 m, chalk fissures tend to be closed due to the mass of rock above them and yields decrease.
- 3.4.15 Variable head permeability tests were undertaken during the site investigation by Soils Limited. However, it is understood that these tests were undertaken above the water table and thus may not reflect the hydraulic conductivity of the strata tested. In the Ground Investigation Report (Document Reference 7.11) calculated soil infiltration rates to use as an indication for preliminary designs. Table 9.5 from the Ground Investigation Report (Document Reference 7.11) is reproduced here as Table 3.6. Based on these calculations a soil infiltration rate of 1 x 10⁻⁶ m/s was adopted for Alluvium, Head and Structured Chalk within 2 mbgl (metres below ground level), and 1 x 10⁻⁵ m/s for Structured Chalk below 2 mbgl.

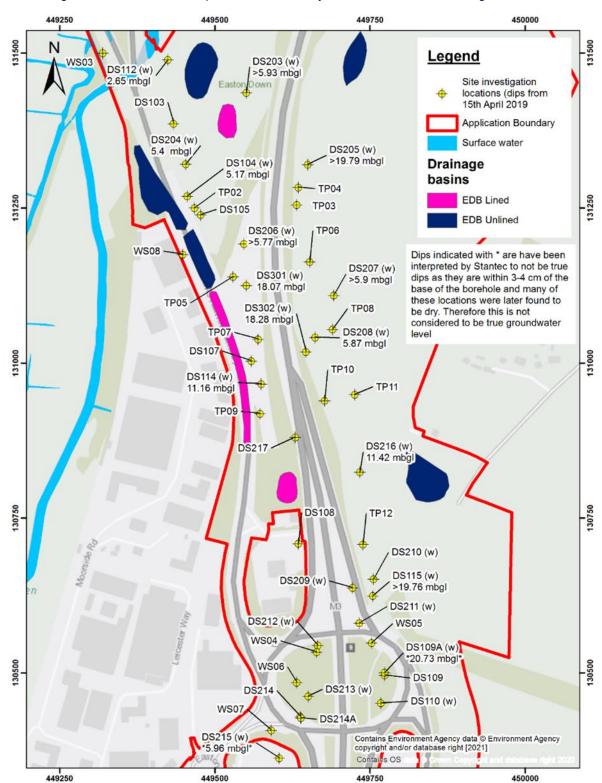
Location	Test depth range (mbgl)	Geology as per borehole record logs (mbgl)	Soil infiltration – calculated (m/s)	Soil infiltration(m/hr)
DS104	0 - 4	0.3 - 3.0 Sandy gravelly clay (Alluvium) 3.0 - 4.0 No description [Alluvium]	9.5 x 10⁻ ⁶	3.4 x 10 ⁻²
D\$107	0 - 4	0.4 - 1.2 Structureless chalk 1.7 - 4.0 Chalk Grade B2	1.4 x 10⁻⁵	5.2 x 10 ⁻²
DS109	0 - 3	0.5 - 1.2 Structureless chalk 1.2 - 3.0 Chalk Grade B2	2.8 x 10⁻⁵	1.0 x 10 ⁻¹
DS210	0 - 4	0 - 1.7 Structureless chalk (Grade Dc) 1.7 - 4.0 Chalk Grade B2	4.2 x 10 ⁻⁶	1.5 x 10 ⁻²
DS301	5.7 - 10.15	5.7 - 7.0 Chalk Grade A3- A4 7.0 - 10.15Chalk Grade A3	1.1 x 10 ⁻⁴	4.1 x 10 ⁻¹

Table 3.6: Calculated soil infiltration rates (from Table 9.5 in the Ground Investigation Report (Document Reference 7.11))

3.4.16 Yields in the Lewes to Portsdown Formations are typically 10.5 l/s in boreholes in the Winchester District (Booth, *et al.*, 2008). Booth et al. also note that "rapid groundwater flows are sometimes found in the unconfined chalk aquifer where

karstic-type development has taken place. This is commonly associated with the proximity of thin cover, such as the Palaeogene deposits or clay-with-flints".

3.5 Groundwater levels and flow


Available data

3.5.1 Limited groundwater monitoring data are available. Monitoring wells were installed by Soils Limited during March and April 2019 at 23 locations and dips were taken at 13 from the installation until 15 April 2019. Four locations (DS104, DS114, DS301, DS302) were then monitored hourly using pressure transmitters and loggers for the period June 2019 to July 2020.

Groundwater levels

Dip data

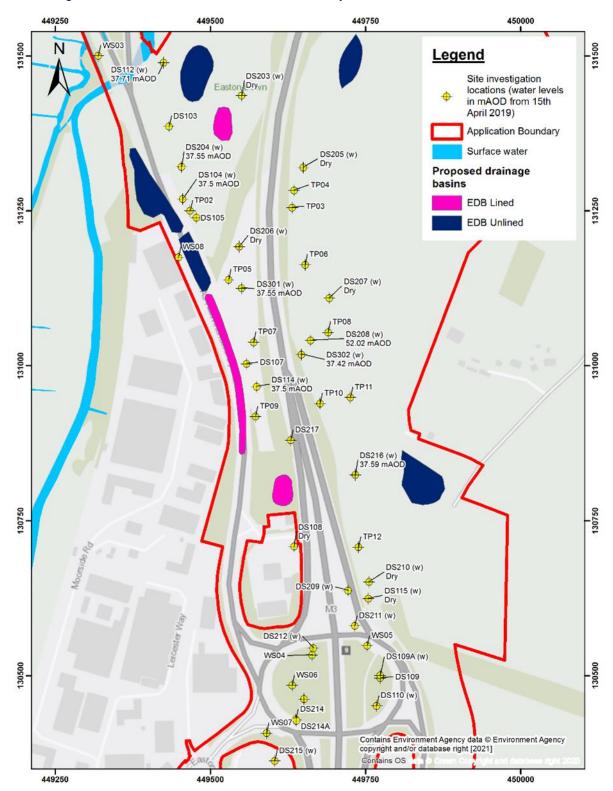

- 3.5.2 Fourteen boreholes were dipped once installed and typically each day during the site investigation works by Soils Limited. The dips and levels on the final day (15th April 2019) are plotted on **Figure 3.7** and **Figure 3.8** respectively, which also shows the locations. The dip data is provided in Table 3.7 for the whole GI period (where available). These data are taken from the Soils Limited (2020) Factual Report and converted to metres above ordnance datum based on the groundwater elevations provided in the report. A number of boreholes were dry throughout the works period. These data indicate that the groundwater level across the central part of the Application Boundary is approximately 37.5 mAOD. Groundwater levels at DS208 are noticeably higher at 52.04 mAOD, which is because this borehole is screened in the Seaford Chalk at a higher elevation of 51.91-54.91 mAOD, whereas the other boreholes are screened below 30 mAOD. There is therefore a locally perched groundwater table at DS208.
- 3.5.3 Groundwater seepage was encountered during the Jacobs Application Boundary investigation at a depth of 3.10 mbgl in WS02 and 4.50 mbgl in WS03, and 7 mbgl in WS08.

Figure 3.7: Groundwater dip data from final day of installation works in mbgl

national

highways

Figure 3.8: Groundwater levels data from final day of installation works in mAOD

national highways

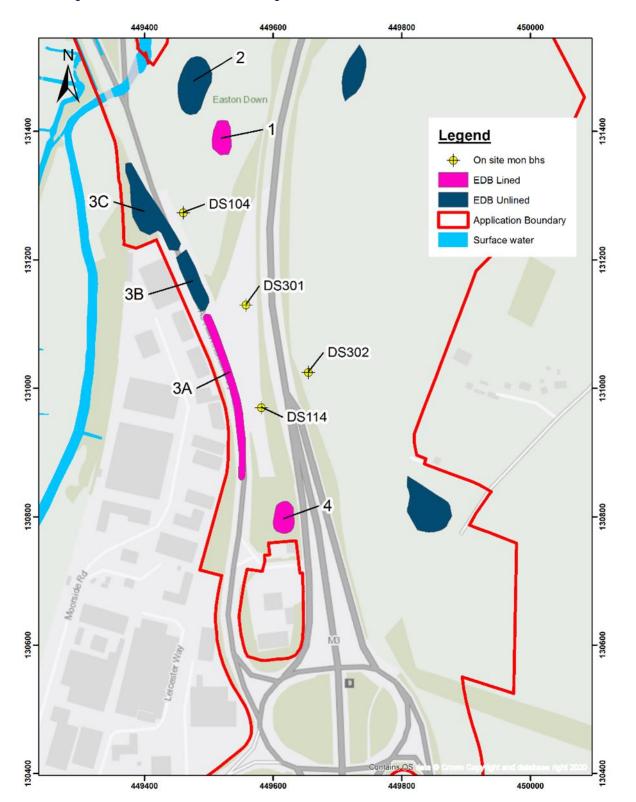
Table 3.7: Groundwater level dip data during site investigation works in mAOD

	Date	18/03	/2019	19/03	/2019	20/03	/2019	22/03	/2019	25/03	/2019	26/03	/2019	2	7/03/201	9	28/03	/2019	01/04	/2019
Trial Hole	Ground level (mAOD)	Water level	Base	Wate	r level	Base	Water level	Base												
DS104	42.67																			
DS112	40.36																		37.72	20.93
DS114	48.66													37.56	29.10	37	.55	29.10	37.56	29.10
DS115	62.23					Insta	alled	42.82	42.43			Dry	42.47	Dry	42.47	Dry	42.47	Dry	42.46	
DS203	57.43																			
DS204	42.95																		37.59	36.85
DS205	69.16	Dry	49.39	Dry	49.39	Dry	49.39	Dry	49.39	Dry	49.44	Dry	49.39	Dry	49.44	D	ry	49.39	Dry	49.44
DS206	56.88															Insta	alled	Dry	51.11	
DS207	64.65	Dry	58.45	Dry	58.77	Dry	58.71	Dry	58.77	Dry	58.78	Dry	58.75	Dry	58.73	D	ry	58.78	Dry	58.78
DS208	57.91	Dry	51.74	Dry	51.92	52.02	51.98	Dry	51.89	52.01	51.97	52.05	52.01	52.00	51.98	52	.05	52.01	52.04	52.02
DS210	61.41							Dry	55.63	Dry	55.63	Dry	55.62	Dry	55.62	D	ry	55.62	Dry	55.63
DS216	49.01							Insta	alled			37.64	34.28	37.47	33.96	37.65	34.29	37.48	33.98	
DS301	55.62					i.								Insta	alled				37.60	<25.62
DS302	55.7			Insta	alled	37.66	<25.7	37.65	<25.7	37.76	<25.7	37.67	<25.7	37.61	<25.7	37.62	<25.7	37.63	<25.7	

(Continued on next page)

l.	Date	02/04	/2019	03/04	/2019	05/04	/2019	09/04	/2019	10/04/	2019	11/04	/2019	12/04	/2019	15/04	i/2019
Trial Hole	Ground level	Water level	Base	Water level	Base	Water level	Base	Water level	Base	Water level	Base	Water level	Base	Water level	Base	Water level	Base
DS104	42.67	Inst	alled	37.54	27.96	37.75	28.04	37.55	27.94	37.53	27.95	37.66	28.05	37.54	27.95	37.50	27.95
DS112	40.36	37.70	20.95	37.74	21.08	37.87	20.95	37.80	20.95	37.73	21.00	37.71	21.00	37.70	20.89	37.71	21.02
DS114	48.66	37.56	29.10	37.54	29.38	37.64	29.22	37.56	29.10	48.66	48.66	37.61	29.09	37.52	29.51	37.50	29.42
DS115	62.23	Dry	42.68	Dry	42.68	Dry	42.82	Dry	42.68	Dry	42.82	Dry	42.46	Dry	42.46	Dry	42.47
DS203	57.43			Insta	alled			Dry	51.48	Dry	51.48	Dry	51.48	Dry	51.53	Dry	51.50
DS204	42.95	37.58	36.87	37.58	36.87	37.77	36.91	37.78	36.87	37.60	36.89	37.69	36.89	37.56	36.90	37.55	36.89
DS205	69.16	Dry	49.44	Dry	49.44	Dry	49.44	Dry	49.44	Dry	49.44	Dry	49.67	Dry	49.69	Dry	49.37
DS206	56.88	Dry	51.11	Dry	51.10	Dry	51.10	Dry	51.01	56.88	56.88	Dry	51.01	Dry	51.10	Dry	51.11
DS207	64.65	Dry	58.78	Dry	58.78	Dry	58.78	Dry	58.76	Dry	58.74	Dry	58.73	Dry	58.74	Dry	58.75
DS208	57.91	52.04	52.03	52.03	52.01	Dry	52.03	Dry	63.79	52.04	52.03	Dry	52.02	Dry	52.02	52.04	52.02
DS210	61.41	Dry	55.62	Dry	55.63	Dry	55.63	Dry	55.63	Dry	55.52	Dry	55.51	Dry	55.51	Dry	55.52
DS216	49.01	37.48	34.14	37.47	34.23	37.74	34.14	37.19	34.14	37.45	34.16	37.61	34.26	37.60	34.26	37.59	34.26
DS301	55.62	37.59	<25.62	<mark>44.54</mark>	<25.62	37.59	<25.62	37.60	<25.62			37.69	<25.62	37.61	<25.62	37.55	<25.62
DS302	55.7	37.78	<25.7	37.62	<25.7	37.28	<25.7	37.49	<25.7	37.64	<25.7	37.46	<25.7	37.44	<25.7	37.42	<25.7

Red text indicates that the base of the borehole extended beyond the reach of the 30 m dip tape used. Yellow highlighting indicates water levels that may be errors.


Logger data

- 3.5.4 Groundwater monitoring points DS104, DS114, DS301 and DS302 are located close to the proposed drainage basins 2, 3A, 3B and 3C, as shown on Figure 3.9, and monitor the Seaford Chalk Formation. These boreholes are between 15 and 30.5 m in depth and are screened at their base within the Seaford Chalk Formation. A summary of the depths and horizons at the boreholes is given in **Table 3.8**.
- 3.5.5 These boreholes were monitored using loggers for one year from June 2019 to July 2020. The water level (in mbgl) is plotted in **Figure 3.11**. The barometrically adjusted groundwater level (in mAOD)) is plotted in **Figure 3.10**. A summary of the groundwater level is given in **Table 3.9**.

Borehole	Ground level (mAOD)	Depth (mbgl)	Elevation of base (mAOD)	Screened interval (mAOD)	Geology summary
DS104	42.67	15.00	27.67	27.67- 32.60 (Seaford Chalk)	Topsoil/Made Ground 0 to 0.3 mbgl Head 0.3 to 8.5 mbgl (some core not recovered). Typically sandy gravelly clay down to 3 mbgl and variable sand, gravels, and sandy gravelly clays at depth. No recovery 8.5 to 10.00 mbgl Seaford Chalk Formation 10.00- 15.00 mbgl
DS114	48.66	19.95	28.71	29.16- 32.16 (Seaford Chalk Formation)	Topsoil 0 to 0.3 mbgl Seaford Chalk Formation from 0.3 to 19.95
DS301	55.62	30.25	25.27	25.62- 30.62 (Seaford Chalk Formation)	Topsoil to 0.4 mbgl. Seaford Chalk from 0.4 to 30.25 mbgl
DS302	55.70	30.45	25.25	25.70- 30.70 (Seaford Chalk Formation)	Head from 0 to 0.27 mbgl. Head is composed of light brown slightly gravelly sandy clay. Seaford Chalk from 0.27 to 30.45 mbgl

Table 3.8: Groundwater monitoring locations

Figure 3.9: Boreholes monitored for groundwater level

3.5.6 During the monitoring period the groundwater levels vary by approximately 2 m, with all locations showing almost identical trends. Groundwater level generally

increase gradually from June 2019 to December 2019, then rise more quickly from mid-December to February 2020 and decline from February to June 2020. Groundwater levels in DS301 and DS302 are approximately 0.3 m higher than those at DS104 and DS114. The groundwater levels range between 37.19 to 39.38 mAOD. This is the same elevation as the River Itchen and surrounding area to the west. We note that the Chalk groundwater level flow direction is likely to be towards the River Itchen (i.e. from east to west). These wells are located along an approximate north to south line (perpendicular to groundwater flow), making it difficult to assess flow directions or hydraulic gradients directly from these data.

Borehole	Ground	lwater leve	l (mbgl)	Groundwater level (mAOD)					
Borenoie	Minimum	Mean	Maximum	Minimum	Mean	Maximum			
DS104	3.83	4.97	5.43	37.24	37.70	38.84			
DS114	9.67	10.98	11.49	37.17	37.68	38.99			
DS301	16.41	17.68	29.21	37.43	37.94	39.21			
DS302	16.32	17.73	28.90	37.42	37.98	39.38			

Table 3.9: Summary of groundwater levels (June 2019 to July 2020)

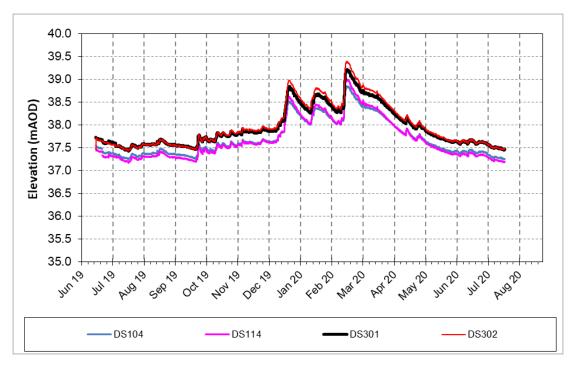
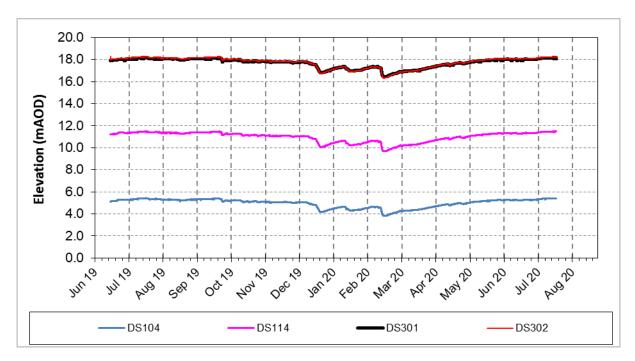



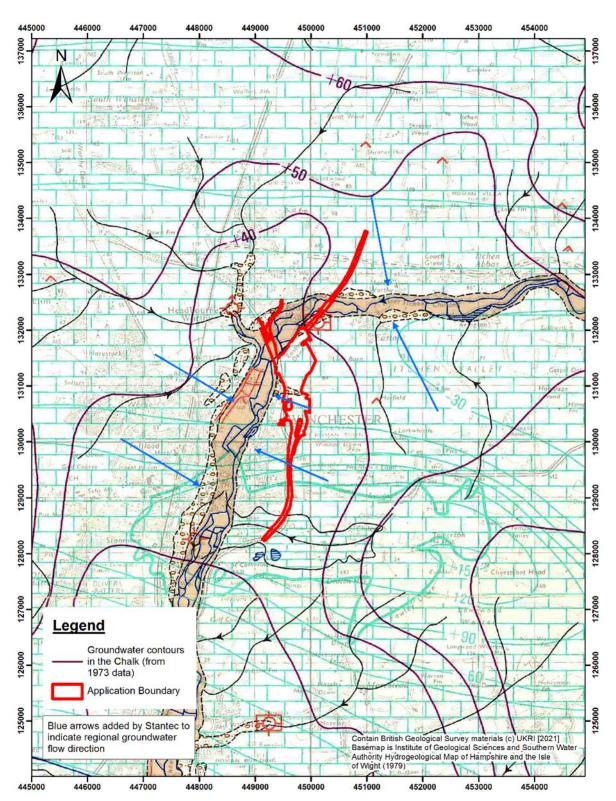
Figure 3.11: Groundwater level in Application Boundary SI boreholes in metres below ground level

Unsaturated zone thickness

3.5.7 Based on the available groundwater level data, the groundwater depth (unsaturated zone thickness) at each of the proposed EDBs can be estimated. These estimates are summarised in **Table 3.10**. Unsaturated zone thickness is based on the average groundwater level in the closest borehole to where the EDB is proposed. The logger data at four boreholes indicates that the average groundwater level over the year was 0.2 m higher than the water level recorded in April 2019 during the installation. Therefore, it has been assumed that variability is the same across all boreholes and so the average unsaturated thickness is taken to be 0.2 m smaller than was measured in April 2019.

EDB	Approximate average elevation of EDB (mAOD)	Approximate average unsaturated thickness to nearest 0.1 m	Nearest borehole
1	45	7.1	DS112
2	51	13.1	DS203 DS112
3B	43.5	5.8	DS104
3C	41.5	3.8	DS104

Table 3.10: Approximate depth to groundwater at unlined EDBs



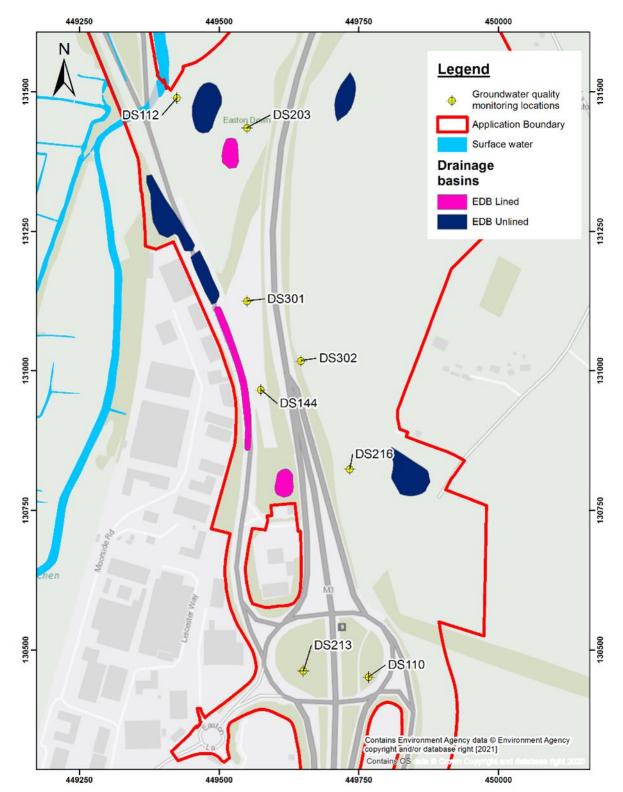
Groundwater flow

- 3.5.8 The Hydrogeology map of Hampshire and the Isle of Wight (Institute of Geological Sciences and Southern Water Authority, 1979) shows the groundwater contours in the Upper Chalk around the Application Boundary to be generally mirroring the topography and indicates groundwater flow towards the River Itchen (**Figure 3.12**). In the area of the drainage features within the Application Boundary, groundwater flows to the southwest are indicated, towards the River. These contours suggest that groundwater discharges to the River.
- 3.5.9 The shape of the SPZs indicate a southeasterly flow at Headbourne Worthy which lies on the western side of the River Itchen. The Itchen Valley abstractions near Easton draw in water from the north of the River and also from the southeast.

3.6 Contaminated land and pollution events

- 3.6.1 An Envirocheck report was obtained to inform the Preliminary Sources Study Report (WSP, 2017). Envirocheck notes there are two petrol filling stations on Easton Lane, one 7 m (Shell) from the Application Boundary and one 66 m (Tesco) away. Stantec has also been made aware by Winchester City Council that there also is a former petrol station located within the Application Boundary along the A33 (letter reference 21/01483/NSIP, dated 7th July 2021).
- 3.6.2 Pollution incidents up to 2 km away from the Application Boundary are summarised in **Table 3.11** (Envirocheck, 2016). These pollution incidents occurred between 1992 and 1999.


Distance	Number of recorded incidents	Summary of incidents			
On site	1	Poultry manure			
		Petrol poured onto ground			
0-250 m	4	LPG tanker overturned			
0-230 m	4	Mineral and synthetic oil			
		Inert suspended solids from cress beds			
251-500	2	Slurry discharge			
m	2	Inert suspended solids from farm			
		Slurry discharge			
		Milky white discharge from construction			
501-	12	Suspended solids from construction			
2000 m	12	Industrial chemicals			
		Waste oil			
		River has turned black – inert solids			


Table 3.11: Pollution incidents within 2km (from Envirocheck, 2016)

3.7 Groundwater quality

- 3.7.1 Groundwater samples were taken from eight boreholes on two occasions during the GI in 2019. The locations tested were DS110, DS112, DS114, DS203, DS213, DS216, DS301 and DS302, which are shown on **Figure 3.13**.
- 3.7.2 On each monitoring occasion, two samples were taken from DS110 at 12 mbgl and 29.5 mbgl, and one sample was taken at the other seven boreholes. Only results from one occasion are available for review by Stantec.

3.7.3 The Tier 2 Controlled Waters Risk Assessment in Chapter 9 (Geology and Soils) of the ES (Document Reference 6.1) identified one exceedance of

copper, two exceedances of mercury, one exceedance of nickel and one exceedance of zinc against the Environmental Quality Standards (EQS). Furthermore, the limit of detections (LOD) for cadmium, hexavalent chromium, copper, lead and cyanide are above the EQS. It also identified one exceedance of mercury, one exceedance of nickel and two exceedances of nitrate compared to the UK DWS (Drinking Water Standards). The nitrate exceedances were from wells sampling from the rural catchment to the east of the Scheme and the metal exceedances were from wells sampling close to historical landfills.

Table 3.12: Summary of groundwater quality data (based on data in Controlled Waters Risk Assessment in Chapter 9 (Geology and Soils) of the ES (Document Reference 6.1))

Analyte	Units	LOD	Fresh Water (EQS)	No. of Tests	Min	Мах	No. > Limit	Locations with exceedances
Arsenic	µg/l	5	50	9	5	5		
Boron	µg/l	5	-	9	14	28		
Cadmium	µg/l	0.4	0.08	9	0.4	0.4	9	All
Chromuim (Total)	µg/l	5	-	9	5	10		
Chromium Hexavalant	µg/l	20	3.4	9	20	20	9	All
Copper	µg/l	5	1	9	5	9	9	All. Detected at DS103 only
Lead	µg/l	5	1.2	9	5	5	9	All
Mercury	µg/l	0.05	0.07	9	0.05	18.3	2	DS110 (0.24) and DS203 (18.3)
Nickel	µg/l	5	4	9	5	68	9	All. Detected at DS203 only
Selenium	µg/l	5	-	9	5	5		
Zinc	µg/l	2	10.9	9	2	27	1	DS203
Ammoniacal Nitrogen as NH4	µg/l	50	260	9	50	107		
Cyanide	µg/l	5	1	9	5	5	9	All
Nitrate as NO3	µg/l	500	-	9	14300	56000		
Sulphate	µg/l	1000	-	9	6000	31000		
рН	pH Units	1	-	9	7.7	7.8		
>C5 to C6 Aliphatic	µg/l	10	-	9	10	10		

M3 Junction 9 Improvement

6.3 Environmental Statement - Appendix 13.2: Hydrogeological Risk Assessment

Analyte	Units	LOD	Fresh Water (EQS)	No. of Tests	Min	Max	No. > Limit	Locations with exceedances
>C6 to C8 Aliphatic	µg/l	10	-	9	10	10		
>C8 to C10 Aliphatic	µg/l	10	-	9	10	10		
>C10 to C12 Aliphatic	µg/l	10	-	9	10	10		
>C12 to C16 Aliphatic	µg/l	10	-	9	10	10		
>C16 to C21 Aliphatic	µg/l	10	-	9	10	10		
>C21 to C35 Aliphatic	µg/l	10	-	9	10	18		
Total Aliphatic C5-35	µg/l	70	-	9	70	70		
>C7 to C8 Aromatic	µg/l	10	-	9	10	10		
>C8 to C10 Aromatic	µg/l	10	-	9	10	10		
>C10 to C12 Aromatic	µg/l	10	-	9	10	10		
>C12 to C16 Aromatic	µg/l	10	-	9	10	10		
>C16 to C21 Aromatic	µg/l	10	-	9	10	10		
>C21 to C35 Aromatic	µg/l	10	-	9	10	10		
Benzene	µg/l	1	10	9	1	1		
Ethylbenzene	µg/l	5	-	9	5	5		
Toluene	µg/l	5	74	9	5	5		
M- & P-Xylene	µg/l	10	-	9	10	10		
O-Xylene	µg/l	5	-	9	5	5		
Total Xylene (M, P & O)	µg/l	15	-	9	15	15		
МТВЕ	µg/l	10	-	9	10	10		
naphthalene	µg/l	0.01	2	9	0.01	0.04		
Acenaphthylene	µg/l	0.01	-	9	0.01	0.01		
Acenaphthene	µg/l	0.01	-	9	0.01	0.01		
Fluorene	µg/l	0.01	-	9	0.01	0.01		
Phenanthrene	µg/l	0.01	-	9	0.01	0.01		
Anthracene	µg/l	0.01	0.1	9	0.01	0.01		
Fluoranthene	µg/l	0.01	0.0063	9	0.01	0.01	9	All
Pyrene	µg/l	0.01	-	9	0.01	0.01		
Benzo(a)anthracene	µg/l	0.01	-	9	0.01	0.01		
Chrysene	µg/l	0.01	-	9	0.01	0.01		
Benzo(b)fluoranthene	µg/l	0.01	0.017	9	0.01	0.01		

Analyte	Units	LOD	Fresh Water (EQS)	No. of Tests	Min	Мах	No. > Limit	Locations with exceedances
Benzo(k)fluoranthene	µg/l	0.01	0.017	9	0.01	0.01		
Benzo(a)pyrene	µg/l	0.01	0.00017	9	0.01	0.01	9	All
Benzo(g,h,i)perylene	µg/l	0.01	0.0082	9	0.01	0.01	9	All
Dibenzo(ah)anthracene	µg/l	0.01	-	9	0.01	0.01		
Indeno(1,2,3- c,d)pyrene	µg/l	0.01	-	9	0.008	0.008		
Sum (benzo b, k, ghi & indeno123cd)	µg/l	0.04	-	9	0.038	0.038		

Orange highlight means LOD > EQS

Red highlight means result > EQS

3.8 Other potential receptors

Licenced water abstractions and discharges

- 3.8.1 There are multiple public groundwater abstractions to the north and south of the Application Boundary. The majority of groundwater abstractions to the north are for potable water supply, with the abstractions to the south and west primarily used for water cress production and other agricultural purposes, see **Table 3.15** and **Figure 3.14**.
- 3.8.2 Given the groundwater divide at the River Itchen, the impact from the EDBs on the boreholes to the west and north of the Itchen will be negligible and are not considered further here.

Private water supplies

- 3.8.3 Winchester City Council have previously provided information on private water supply abstractions and discharges, located within a 2 km radius of the Application Boundary. It is understood that the current Application Boundary has been revised and as a result some of these supplies now fall more than 2 km from the Application Boundary.
- 3.8.4 In the data provided by Winchester City Council, there are nine boreholes used for private water supplies, all of which are currently active and abstract from the underlying chalk aquifer; details of these can be seen in **Table 3.13**. The locations of private water supply boreholes are shown on **Figure 3.14**. Some abstractions to the north are beyond the extent of the map and are therefore not shown.

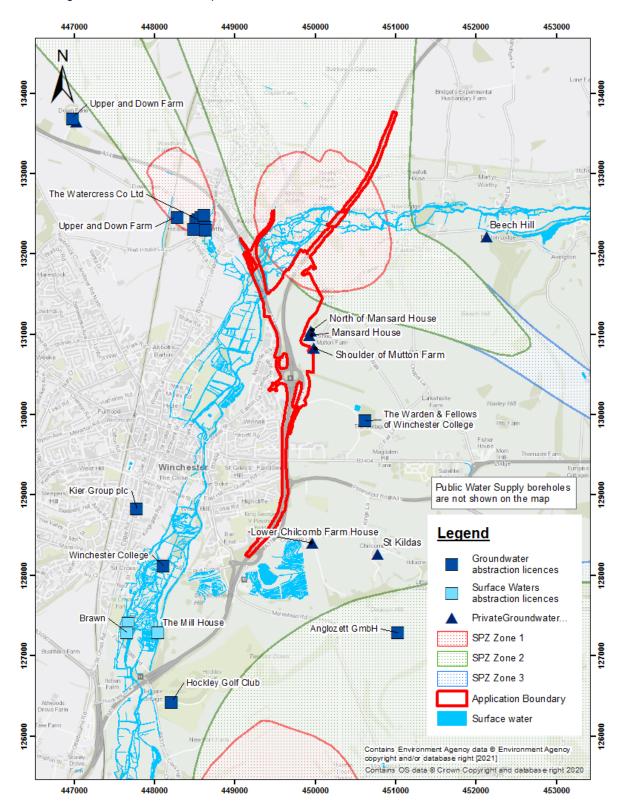

- 3.8.5 It has recently been drawn to the Applicant's attention that there are two additional private groundwater abstractions in the vicinity of the Mansard House abstraction. These are also shown in **Table 3.13** and on **Figure 3.14**.
- 3.8.6 For the private water supplies that are on the western and northern side of the River Itchen, the River forms a hydraulic barrier, and the Scheme will have a negligible impact upon them. Consequently they are not considered further in this assessment.
- 3.8.7 For the private water supplies that are on the eastern and southern sides, they are mostly either up the hydraulic gradient, or across the hydraulic gradient at a sufficient distance of the EDBs, and the Scheme will have a negligible impact upon them. Consequently they are not considered further in this assessment. The one exception to this is the Shoulder of Mutton Farm abstraction which is estimated to be some 40m from the Application Boundary and some 90m from the eastern edge of EDB5. Therefore this private water supply is considered for further assessment.

Table 3.13: Private water abstractions (within 2km of initial scheme boundary)

FID	Supply Name	Supply Number	Source Type	Source Eastings	Source Northings	Distance from Applicatio n Boundary				
Withi	n Application E	Boundary		-	-	-				
	None					-				
Winchester City Council - Identified outside of the Application Boundary										
19	2 km north									
32	Burntwood Farm	PW000118	Borehole	450500	134760	1 km to north				
35	Downs Farm Cottages	PW000195	Borehole	447032	133651	2.5 km to north west				
51	Mansard House	PW000120	Well	449931	130990	90 m to east				
58	Shroner Hill Farmhouse	PW000122	Borehole	450989	135290	1.5 km north				
77	Beech Hill	PW000117	Borehole	452132	132220	1.6 km to east				
112	Lower Chilcomb Farm House	PW000186	Borehole	449967	128403	500 m to east				
133	St Kildas	PW000107	Borehole	450776	128265	560 m to south east				
136	The Beacon	PW000066	Borehole	450992	135448	1.65 km north				
Addi	Additional wells identified in June 2023									
N/A	North of Mansard House	Unknown	Well	449947	131042	90 m to east				
N/A	Shoulder of Mutton Farm	Unknown	Well	449980	130828	40 m to east				

Designated environmental sites

- 3.8.8 There are three designated sites within 2km of the Application Boundary, two of which are within the Application Boundary itself.
- 3.8.9 The River Itchen is a SSSI and a SAC along all of its length. The SSSI extends to the surrounding water dependent habitats and environments. Part of the River Itchen SSSI is managed as the Winnall Moors Nature Reserve to the west of the Application Boundary. The River Itchen flows south to the Solent and Dorset Coast Special Protection Area (SPA) and the Solent and Southampton Water SPA / Ramsar Site.
- 3.8.10 The South Downs National Park forms part of the eastern side of the Application Boundary and extends to the east.
- 3.8.11 Only the River Itchen SSSI is groundwater dependent.

Name	Designation	Description	Groundwater dependent?	Closest distance from Application Boundary
River Itchen (multiple parts)	SSSI SAC	River Itchen and surrounding land. Multiple habitats and environments. Close to site: - Fen, marsh swamp, lowland - Broadleaved mixed and yew woodland - Neutral grassland - Rivers and streams	Yes	On site
South Downs	National Park	Chalk Hills and wooded sandstone and clay hills and vales.	Not generally. None within 5 km other than River Itchen (see above).	On site
St Catherine's Hill	SSSI (Biological)	Chalk grassland scrub	No	1.4 km south
Cheesefoot Head	SSSI (Biological)	Chalk downland with horseshoe shaped dry valley, with species rich grasslands.	No	1.8 km east

Table 3.14: Designated Sites within 2km of the Application Boundary

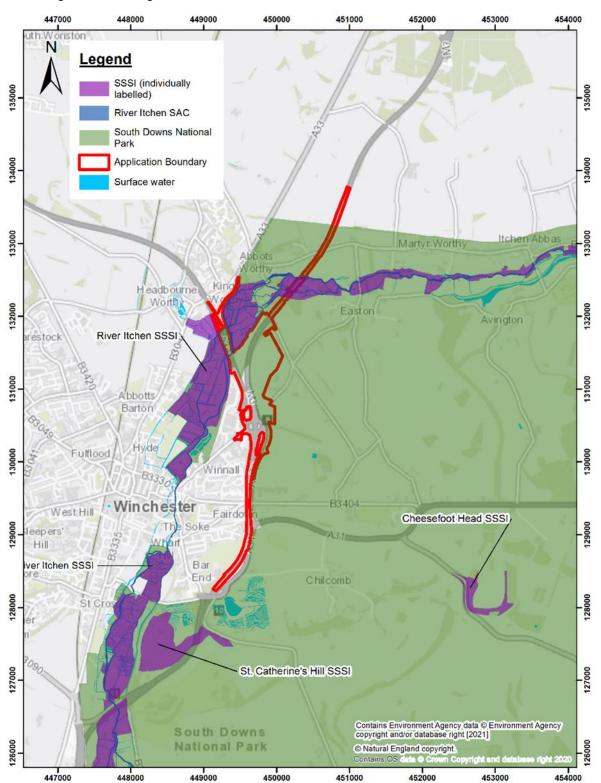


Figure 3.15: Designated sites within 2 km

Table 3.15: Licenced groundwater and surface water abstractions

Supply Name		Licence nun	nber	Effective date	Purpose	Use	Source	Aquifer type	National Grid Reference			
St Cross (Itchen)	31/086	23/04/1992	Aquaculture Fish	Fish Farm/Cress Pond Throughflow	Southern Region Surface Waters	-			SU4767274 1			
Point A, Borehole At Garnier Road	SO/04 2/0031 /019	17/02/2012	Aquaculture Fish	Fish Farm/Cress Pond Throughflow	Southern Region Groundwate r	H5IT Itchen Chalk / UGS			H511 Ifchen Chalk / LIGS			SU4811328 115
Burntwood Farm, Martyr Worthy	11/42/ 22.5/7 6	23/12/1965	General Agriculture	General Farming & Domestic	Southern Region Groundwate r	H5IT Itchen Chalk / UGS			SU5033350 1			
Hazeley Estate, Twyford	11/42/ 22.6/8 9	23/12/1965	General Agriculture	General Farming & Domestic	Southern Region Groundwate r	H5IT Itchen Chalk / UGS		H5IT Itchen Chalk / UGS		SU5103272 9		
Watercress Beds At Headbourne Worthy Point A	11/42/ 22.5/1	22/02/1966	Aquaculture Plant	Fish Farm/Cress Pond Throughflow	Southern Region Groundwate r	H5IT Itchen Chalk / UGS		SU4851732 410				

Supply Name		Licence nun	Licence number		Effective date	Purpose	Use	Source	Aquifer type	National Grid Reference
Watercress Beds At Headbourne Worthy Point B	11/42/ 22.5/1	22/02/1966	Aquaculture Plant	Fish Farm/Cress Pond Throughflow	Southern Region Groundwate r	H5IT Itchen Chalk / UGS		SU4853832 428		
Watercress Beds At Headbourne Worthy Point C	11/42/ 22.5/1	22/02/1966	Aquaculture Plant	Fish Farm/Cress Pond Throughflow	Southern Region Groundwate r	H5IT Itchen Chalk / UGS			SU4857832 456	
Watercress Beds At Headbourne Worthy Point D	11/42/ 22.5/1	22/02/1966	Aquaculture Plant	Fish Farm/Cress Pond Throughflow	Southern Region Groundwate r	H5IT Itchen Chalk / UGS		SU4861432 487		
Watercress Beds At Headbourne Worthy Point E	11/42/ 22.5/1	22/02/1966	Aquaculture Plant	Fish Farm/Cress Pond Throughflow	Southern Region Groundwate r	H5IT Itchen Chalk / UGS		SU4862732 339		
Watercress Beds At Headbourne Worthy Point F	11/42/ 22.5/1	22/02/1966	Aquaculture Plant	Fish Farm/Cress Pond Throughflow	Southern Region Groundwate r	H5IT Itchen Chalk / UGS		SU4863532 303		
Upper & Down Farms Point A, Headbourne Worthy	11/42/ 22.5/7 3	23/12/1965	General Agriculture	General Farming & Domestic	Southern Region Groundwate r	H5IT Itchen Chalk / UGS		SU4698336 9		

Supply Name		Licence nun	icanca niimhar		Effective date	Purpose	Use	Source	Aquifer type	National Grid Reference
Upper & Down Farms Point B, Headbourne Worthy	11/42/ 22.5/7 3	23/12/1965	General Agriculture	General Farming & Domestic	Southern Region Groundwate r	H5IT Itchen Chalk / UGS		SU4828324 6		
Upper & Down Farms Point C, Headbourne Worthy	11/42/ 22.5/7 3	23/12/1965	General Agriculture	General Farming & Domestic	Southern Region Groundwate r	H5IT Itchen Chalk / UGS		SU4849323 1		
Point A Down Farm Hursley	31/108	22/07/2008	General Agriculture	General Farming & Domestic	Southern Region Groundwate r	H5 Chalk				SU4440266 0
St Cross, Winchester (Itchen)	SO/04 2/0031 /035	02/05/2014	Private Water Supply	Heat Pump	Southern Region Surface Waters	-				SU4765327 288
Shawford Mill Headrace (Itchen Navigation)	SO/04 2/0031 /018/R 01	21/07/2020	Electricity	Hydroelectric Power Generation	Southern Region Surface Waters	-				SU4739724 981
Carrier Channel (Itchen)	SO/04 2/0031 /002	29/01/2010	Electricity	Hydroelectric Power Generation	Southern Region Surface Waters	-				SU5365232 564

Supply Name		Licence nun	Licence number		Effective date	Purpose	Use	Source	Aquifer type	National Grid Reference
Twyford Ps Point D	11/42/ 22.6/9 2	26/11/1965	Public Water Supply	Potable Water Supply - Direct	Southern Region Groundwate r	H5IT Itchen Chalk / UGS		SU4824		
Twyford Ps Point A	11/42/ 22.6/9 2	26/11/1965	Public Water Supply	Potable Water Supply - Direct	Southern Region Groundwate r	H5IT Itchen Chalk / UGS		SU4825		
Twyford Ps Point C	11/42/ 22.6/9 2	26/11/1965	Public Water Supply	Potable Water Supply - Direct	Southern Region Groundwate r	H5IT Itchen Chalk / UGS		SU4924		
Twyford Ps Point B	11/42/ 22.6/9 2	26/11/1965	Public Water Supply	Potable Water Supply - Direct	Southern Region Groundwate r	H5IT Itchen Chalk / UGS		SU4924		
Itchen Valley Point D	11/42/ 22.4/8 0	26/11/1965	Public Water Supply	Potable Water Supply - Direct	Southern Region Groundwate r	H5IT Itchen Chalk / UGS		SU4932		
Itchen Valley Point A	11/42/ 22.4/8 0	26/11/1965	Public Water Supply	Potable Water Supply - Direct	Southern Region Groundwate r	H5IT Itche	n Chalk	/ UGS		SU5032

Supply Name		Licence nun	icanca hiimhar		Effective date	Purpose	Use	Source	Aquifer type	National Grid Reference
Itchen Valley Point C	11/42/ 22.4/8 0	26/11/1965	Public Water Supply	Potable Water Supply - Direct	Southern Region Groundwate r	H5IT Itchen Chalk / UGS		SU5032		
Winnall Down Farm, Winchester	11/42/ 22.4/1 46	20/06/1977	General Agriculture	Spray Irrigation - Direct	Southern Region Groundwate r	H5IT Itchen Chalk / UGS		SU5061929 927		
Hockley Golf Club	11/42/ 22.6/9 5	23/12/1965	Golf Courses	Spray Irrigation - Direct	Southern Region Groundwate r	H5IT Itchen Chalk / UGS		SU4821264 2		
Hockley Golf Club	11/42/ 22.6/9 5	23/12/1965	Golf Courses	Spray Irrigation - Direct	Southern Region Groundwate r	H5IT Itchen Chalk / UGS		SU4821264 2		
River Itchen At Shawford Park	SO/04 2/0031 /003	09/10/2009	Remedial River/Wetla nd Support	Transfer Between Sources (Post Water Act 2003)	Southern Region Surface Waters	-		SU4740724 753		
Water Meadow Channel Off R Itchen	SO/04 2/0031 /010	18/10/2010	Remedial River/Wetla nd Support	Transfer Between Sources (Post Water Act 2003)	Southern Region Surface Waters	-				SU4804127 290

Supply Name		Licence nun	licence hlimper		Effective date	Purpose	Use	Source	Aquifer type	National Grid Reference
Lower Itchen Navigation At Shawford	SO/04 2/0031 /020	27/03/2012	Non- Remedial River/Wetla nd Support	Transfer Between Sources (Pre Water Act 2003)	Southern Region Surface Waters	-				SU4711323 809
Wellpoints At Winchester College	SO/04 2/0032 /012	22/07/2020	Constructio n	Dewatering	Southern Region Groundwate r	H5IT Itchen Chalk / UGS		SU4777928 830		

4 Conceptual site model

4.1 Sources

Carriageway drainage

- 4.1.1 Rainwater on the carriageway will wash any contaminants present into the drainage system. Contaminants may be in solution which are considered to provide an acute risk or sorbed onto solids which may present a chronic risk. The following pollutants have been identified by the HEWRAT (Highways England, 2015) as potential contaminants to receptors from road drainage schemes:
 - Microplastics and other particulate matter (from brake and tyre wear)
 - Soluble metals (copper and zinc)
 - Sediment related pollutants associated with chronic pollution impacts (total copper, zinc, cadmium, PAH including species pyrene, fluoranthene, anthracene and phenanthrene)
- 4.1.2 The drainage system discharges into the EDBs. Prior to entry into the EDBs large items are screened out within the lined Pollution Control Device (PCD) ditches and vertical separation forebays. Within the EDBs, finer suspended sediment will settle out as flow velocities diminish. EDBs 1, 3A and 4 are sealed and will not discharge to ground. There will also be an element of attenuation as soluble heavy metals and hydrocarbons will sorb onto sediment present within the EDBs.
- 4.1.3 Discharge from the lined EDBs is to the unlined EDBs 2, 3B, 3C, 5 and 6. Within these EDBs there will be secondary attenuation, settlement and filtration within vegetated EDBs which will contain both wet and dry habitats.
- 4.1.4 We note that un-lined EDB2 and EDB3C receive direct runoff from the carriageway via lined PCD ditches and forebays.
- 4.1.5 EDB5 receives the majority of its discharge from the rural catchment surrounding it and a small proportion from existing highway drainage. Table 6.4 in Section 6.3 of Appendix 13.1 (Drainage Strategy Report) of the ES (6.2, APP-142 APP-143) states that EDB5 serves 2.3 ha of highway and 76.5 ha of overland (rural) catchment.
- 4.1.6 Sediment will not infiltrate through the superficial deposits or structureless chalk. Unless, the EDBs are constructed directly over transmissive fissures, we can expect there will be no infiltration of solids, even to structured chalk. Sediment (and any entrained contaminants) will remain trapped within the forebays or EDBs and be subject to periodic removal during maintenance events. Thus, it

is contaminants that are directly soluble or that leach from the sediments within the EDBs that form the potential source of contamination for groundwater.

Placement of potentially contaminated materials via cut and fill operations

- 4.1.7 It is expected that much of the material excavated under the Scheme will be reused as fill material to bring areas up to required levels. It is noted that a significant volume of material is required to raise levels in the eastern part of the Scheme.
- 4.1.8 As detailed in Section 3.2.2 this material may contain a proportion of Made Ground from previous road schemes.

Other sources of contamination

4.1.9 There are a number of potential sources of contamination within and adjacent to the Application Boundary. These include landfills, a former gasworks and ironworks, petrol stations, railways and land with mixed industrial use. Rainwater passing through these sources has the potential to leach contaminants into the groundwater.

4.2 Pathways

Unsaturated zone

- 4.2.1 Where the EDBs and retained highway soakaways are un-lined, they have the potential to discharge to ground. Site specific soil infiltration rates are presented in Section 3.4.3. On the basis of these limited data a maximum soil infiltration rate of 1 x 10-6 m/s was adopted for Alluvium, Head and Structured Chalk within 2 mbgl, and 1 x 10-5 m/s for Structured Chalk below 2 mbgl.
- 4.2.2 The other sources of contamination, including re-used material, may be located on superficial deposits or directly on the Chalk. Either way, contaminants will have to pass through the unsaturated zone to the water table.
- 4.2.3 Rainfall is estimated as 806 mm/a which represents a long-term average infiltration rate to the EDBs. So long as the unsaturated zone hydraulic conductivity is higher than this, recharge to the water table will occur. During storm events, when the EDBs become saturated, the infiltration rate could rise to a maximum rate that will be limited by the hydraulic conductivity of the underlying strata. However, such high infiltration rates will be relatively short lived as excess water within the EDBs will drain to surface water and it is expected that the EDBs will be dry for most of the time.
- 4.2.4 Within the unsaturated zone contaminant attenuation may occur. Attenuation comprises retardation and degradation processes. Heavy metals may be retarded via sorption. There are a number of mechanisms that control metal sorption which is often influenced by soil pH and redox conditions. Where

sorption occurs due to cation exchange, the degree of sorption is influenced by the concentration gradient between the soluble contaminant and the solid matrix. If a more dilute flux subsequently passes through the unsaturated zone, contaminants may de-sorb back into solution. Organic compounds, such as PAHs, adsorb onto clay particles and the sorption rate is largely controlled by the fraction of organic carbon present. Whilst this may be significant in alluvial material, chalk tends to have very low organic carbon contents and as such retardation may be limited. Organic compounds may also bio-degrade within the unsaturated zone.

Saturated zone

- 4.2.5 Once the contaminants reach the water table, they will migrate within the receiving groundwater, down the hydraulic gradient. Whilst the superficial deposits and structureless chalk may be saturated and act as contaminant transport pathways, contaminant transport will be greatest within fissures and fractures within the structured chalk.
- 4.2.6 Whilst it is possible that attenuation processes may occur during transport within fissured chalk, they tend to be relatively insignificant. The most likely process is diffusion from the fissure into the chalk matrix, which effectively retards contaminant migration within the Chalk. Given the difficulties in parameterising this process, it has conservatively been ignored for this assessment.
- 4.2.7 Estimating the volumetric flux in fissured chalk is difficult. Transmissivity data provides a weighted average of hydraulic conductivity in fissures and matrix and applying this across the entire chalk body provides a reasonable dilution estimate. However, in order to determine realistic travel times, it is often necessary to utilise very low effective porosity values. This latter parameter effectively determines the proportion of the chalk that is present as fissures where travel times can be very fast.
- 4.2.8 Based on the published chalk groundwater contours, the flow direction within the chalk is assessed as follows.
 - Areas occupied by the EDBs and retained highway soakaways is to the southwest, towards the River Itchen
 - Areas within the Itchen Valley (near Easton) PWS SPZ is to the northwest towards the PWS

Receptors

- 4.2.9 For the purposes of this assessment, the following receptors have been assessed.
 - The water table is the receptor for Hazardous substances

 A distance of 50m from the Application Boundary is taken to be the receptor for non-hazardous pollutants

5 Groundwater Impact Assessment

5.1.1 The impact to groundwater from the developments in the Application Boundary has been assessed using the methodology outlined in Section 9.4 of the Preliminary Environmental Information Report (PEIR) (Stantec, 2021) and is detailed in **Table 5.1**. The receptor for all potential sources of contamination is groundwater.

5.2 Road drainage

5.2.1 The impact assessment has determined that, without mitigation, the road drainage has the potential to cause a significant impact (Moderate, Large or Very Large) on the groundwater receptor. To mitigate against the potential impacts, a DQRA will be undertaken to investigate the impact of the EBDs on the groundwater quality. This involves modelling of the EDBs following the Environment Agency Remedial Targets Methodology (RTM) approach. The findings of this modelling are provided in Section 6.3.

5.3 Filled areas

5.3.1 Soil samples from the Application Boundary were subject to geoenvironmental testing as detailed in the Ground Investigation Report (Document Reference 7.11). A comparison was made of the results to Generic Assessment Criteria which showed that the soils would not pose a hazard to human health. Water samples were also subject to testing. The water samples would contain any contaminants that have leached from the soils and are detailed in Section 3.4.6. These results were compared to EQS and DWS limits as part of a controlled waters risk assessment in Chapter (Geology and Soils) of the ES (Document Reference 6.1) which concluded that the risk to controlled waters was low.

Table 5.1: Summary of impacts

Source of Impact	Receptor	Pathways	Magnitude of impact	Value (sensitivity) of receptor/ resource	Potential degree of impact	Potential degree of impact following further assessment
Unlined EDBs 2, 3B & 3C	Groundwa ter	Unsaturated zone / saturated zone	Moderate (HEWRAT assessment is medium / high)	High	Moderate or Large	Yes – EBDs (the embedded mitigation) will prevent infiltration of solids and will sorb some contaminants. Further sorption and attenuation will occur in the unsaturated zone. It is demonstrated in the DQRA detailed in the next section that impacts are minor.

Source of Impact	Receptor	Pathways	Magnitude of impact	Value (sensitivity) of receptor/ resource	Potential degree of impact	Potential degree of impact following further assessment
Unlined EDB 5	Groundwa ter	Unsaturated zone / saturated zone	Predominantly receives runoff from rural catchments to the east of the Application Boundary. Approximately 90 m down hydraulic gradient of Shoulder of Mutton private abstraction– Minor adverse	High	Slight or Moderate	N/A
Unlined EDB 6	Groundwa ter	Unsaturated zone / saturated zone	Receives runoff from rural catchments to east of Application Boundary. – Negligible	High	Slight	N/A
Fill areas	Groundwa ter	Unsaturated zone / saturated zone	Soil and water testing on samples has shown no risk to human health or	High	Slight	N/A

Source of Impact	Receptor	Pathways	Magnitude of impact	Value (sensitivity) of receptor/ resource	Potential degree of impact	Potential degree of impact following further assessment
			controlled waters. Negligible			
Old petrol station	Groundwa ter	Unsaturated zone / saturated zone	Negligible	High	Slight	Investigation to determine if any tanks or residual contaminants in the ground
Operatio nal petrol stations	Groundwa ter	Unsaturated zone / saturated zone	Negligible as any issues would be rapidly identified and remediated by petrol station operator	High	Slight	N/A
Historica I land contami nation	Groundwa ter	Unsaturated zone / saturated zone	Negligible as assessed by Controlled Waters Risk Assessment in Chapter 9 (Geology and Soils) of the ES	High	Slight	N/A

Source of Impact	Receptor	Pathways	Magnitude of impact	Value (sensitivity) of receptor/ resource	Potential degree of impact	Potential degree of impact following further assessment
			(Document Reference 6.1)			
Historica I pollution events	Groundwa ter	Unsaturated zone / saturated zone	Negligible as short- lived events unlikely to cause gross contamination of groundwater	High	Slight	N/A

6 Detailed Quantitative Risk Assessment for EDBs

6.1 Introduction

- 6.1.1 Section 5 has identified a potential moderate or large impact from the un-lined EDBs Nos 2, 3B and 3C and a slight or moderate impact from the un-lined EDB5. The EDBs have been subject to a HEWRAT screening assessment. The results of the screening assessment are that all but one of the currently proposed EDBs have a 'medium risk' to groundwater and one has a high risk.
- 6.1.2 In accordance with the National Highways methodology these have been taken forward to a DQRA in order to provide a more robust assessment of the risk to the Chalk groundwater from these potential sources of contamination.
- 6.1.3 The DQRA follows the Remedial Targets Methodology (RTM) (Environment Agency, 2006). A Level 1 and Level 2 Assessment has been undertaken.
- 6.1.4 A Level 1 Assessment considers processes within the source term. For the acute source term, there is no process operating within the source term and the predicted concentrations will equal the source term concentrations. For the chronic source term, partitioning of the contaminants between soil and aqueous phase within the source term is taken into account and the estimated aqueous concentration is limited by the contaminants pure phase solubility.
- 6.1.5 A Level 2 Assessment considers attenuation processes within the unsaturated zone and dilution within the saturated zone. The input to the RTM is source concentrations for acute and chronic risk based on HEWRAT Step 2 output (i.e. representative concentrations within the EDBs). The output from the model is predicted concentrations at the identified groundwater receptors. These predicted concentrations are compared to receptor Target Concentrations. If the predicted concentration is lower than the Target Concentration, we conclude that the EDBs do not pose a risk to groundwater. Conversely, if they are higher, we conclude that they may pose a risk.
- 6.1.6 Modelling is undertaken using Stantec's (formally ESI) Risk Assessment Model (RAM) software (ESI, 2008). Electronic copies of the models are given in Appendix E.
- 6.1.7 The RAM software package, together with a number of groundwater risk assessment tools, has been benchmarked by ESI for the Environment Agency (ESI, 2001). Additionally, the equations used in RAM have been verified by comparison between direct evaluation of an analytical solution and the semianalytic transform approach applied for more complex pathways, and by comparison with published solutions used for verification as part of the nuclear waste industry code comparison exercise INTRACOIN (Robinson & Hodgkinson, 1996).

6.2 Model Parameterisation

6.2.1 In the model, it is conservatively assumed that the EDBs are saturated for 50% of the year i.e. that the EDBs contain water for 6 months in each year and are dry of 6 months. During periods when the EDBs are saturated, the infiltration rate is limited to the maximum infiltration rate of the receiving strata. For the remaining 6 months of the year, it is assumed that there is no infiltration. The maximum infiltration rates are presented in **Table 6.1** and these rates are multiplied by 0.5 in the model to derive a conservatively appropriate annual average infiltration rate.

Table 6.1 Infiltration rates

Basin	Underlying geology	Infiltration rate into top of unsaturated zone (m/s)	Justification for infiltration rate
2	Alluvium, structured chalk,	1 x 10 ⁻⁶	Section 3.2.11 of this HgRA states that there is no Ground Investigation data in the vicinity of
3В	Made Ground and head (base not penetrated)	1 x 10 ⁻⁶	EDB 5, but underlying geology is likely to be chalk. Calculated infiltration rate from Ground Investigation Report
3C	Made Ground, alluvium, structureless chalk and structured chalk.	1 x 10 ⁻⁶	(Document Reference 7.11) for sediments
5	Structureless chalk and structured chalk. Likely to be structureless near surface	1 x 10 ⁻⁶	

6.2.2 The source geometry for each of the EDBs is given in **Table 6.2**. The area and width perpendicular to groundwater flow has been measured from GIS. The length is then obtained by dividing the width into the area. A sediment thickness of 1 m is assigned in order to estimate a volume.

Table 6.2: Source geometry

EDB	Parameter	Values	Units	Justification			
All	Thickness	1	m	Parameter not used in model as a constant source (rather than declining source) assumed			
	Area	1351	m²	Measured from GIS			
2	2 Width		m	Indicative measured width perpendicular to groundwater flow from plans (assumed to be rectangular in model)			
	Length	24.6	m	Calculated from area divided by the width			
	Area	2,046	m²	Measured from GIS			
3B	Width	93	m	Indicative measured width perpendicular to groundwater flow from plans (assumed to be rectangular in model)			
	Length	22	m	Calculated from area divided by the width			
	Area	4,205	m ²	Measured from GIS			
3C	Width	150	m	Indicative measured width perpendicular to groundwater flow from plans (assumed to be rectangular in model)			
	Length	28	m	Calculated from area divided by the width			
	Area	3933	m²	Measured from GIS			
5	Width	60	m	Indicative measured width perpendicular to groundwater flow from plans (assumed to be rectangular in model)			
	Length	65.55	m	Calculated from area divided by the width			

- 6.2.3 Chronic source term concentrations are taken from the HEWRAT Step 2 output (i.e. representative concentrations within the EDBs) (**Table 6.3**). These represent soil concentrations within the sediments at the base of the EDBs. Following the RTM methodology, these are converted into aqueous concentrations on the basis of partitioning coefficients for solid and aqueous phases (**Table 6.5**) and the resulting aqueous concentration is limited by the contaminant solubility (**Table 6.6**). Acute source term concentrations are taken directly from HEWRAT Step 2 output (**Table 6.4**).
- 6.2.4 The attenuation parameters (**Table 6.5**) are also assigned for sorption within the unsaturated zone.
- 6.2.5 For EDB5, no HEWRAT assessment was undertaken, so the highest source term from EDB3B / EDB3C has been selected for the road drainage

concentration at that receptor. It is assumed that concentrations from the rural catchment are zero. Therefore the source term concentration used in the model is the weighted average of the rural catchment area (76.5 ha) and the highways runoff (2.3 ha).

Table 6.3: Chronic Source terms (from HEWRAT)

	Sediment concentrations from HEWRAT assessment – 95 th percentile (mg/kg)								
EDB	Copper Zinc Cadmium Pyrene Fluoranthene Anthracene Phenanthrene								
2	968	3569	2	9.729	9.335	0.596	2.632		
3B	1875	7101	3	9.729	9.335	0.596	2.632		
3C	1875	7101	3	9.729	9.335	0.596	2.632		
5	54.73	207.26	0.09	0.28	0.27	0.02	0.08		

Table 6.4: Acute source term concentrations (from HEWRAT – 95th percentile (mg/I))

EDB	Copper	Zinc
2	0.069	0.255
3B	0.145	0.797
3C	0.145	0.797
5	0.0042	0.023

Table 6.5: Attenuation parameters

Determinant	Parameter	Value	Units	Justification
Copper	Partition coefficient (Kd)	13,770	l/Kg	Mid-point of LandSim help
	Half life	No dec	cay	-
Zinc	Partition coefficient (Kd)	301	l/Kg	Mid-point of LandSim help
	Half life	No dec	cay	-
Cadmium	Partition coefficient (Kd)	751	l/Kg	Mid-point of LandSim help
	Half life No		cay	-
Pyrene	Partition coefficient (Koc)	6.8 x 10 ⁴	l/Kg	USEPA (1999)
	Half life	1,925	days	Longest half life in Dallas et al (1999)
Fluoranthene	Partition coefficient (Koc)	4.91 x 10 ⁴	l/Kg	USEPA (1999)

Determinant	Parameter	Value	Units	Justification
	Half life	462	days	Longest half life in Dallas et al (1999)
Anthracene	Partition coefficient (Koc)	2.35 x 10 ⁴	l/Kg	USEPA (1999)
	Half life	365	days	Abiotic degradation rate Verschueren (2001)
Phenanthrene	Partition coefficient (Koc)	2.09 x 10 ⁴	l/Kg	USEPA (1999)
	Half life	730	days	Abiotic degradation rate Verschueren (2001)

Table 6.6: Solubility parameters

Determinant	Solubility (mg/l)	Unit	Justification
Copper	2.93 x 10 ⁵	mg/l	ConSim
Zinc	6.06 x 10 ⁵	mg/l	ConSim
Cadmium	6.51 x 10 ⁵	mg/l	ConSim
Pyrene	0.137	mg/l	USEPA (1999)
Fluoranthene	0.232	mg/l	USEPA (1999)
Anthracene	0.0537	mg/l	USEPA (1999)
Phenanthrene	1.28	mg/l	USEPA (1999)

6.2.6 The Target Concentrations are defined as follows (**Table 6.7**):

- Hazardous substances: UKTAG Concentrations in groundwater below which the danger of deterioration in the quality of the receiving groundwater is avoided (UKTAG, 2016)
- Non-hazardous pollutants: UK DWS taken from the 2016 Regulations, or 1989 Regulations as detailed in Table 6.7

Table 6.7: Target concentrations

Parameter	Value	Units	Justification
Copper	2	mg/l	Non-hazardous pollutant. The Water Supply (Water Quality) Regulations 2016

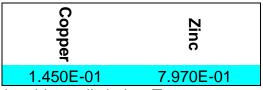
Parameter	Value	Units	Justification
Zinc	5	mg/l	Non-hazardous pollutant. Water Supply (Water Quality Regulations) 1989
Cadmium	5 x 10 ⁻³	mg/l	Non-hazardous pollutant. The Water Supply (Water Quality) Regulations 2016
Pyrene	5 x 10 ⁻⁶	mg/l	Hazardous substance. UKTAG Concentrations in groundwater below which the danger of deterioration in the quality of the receiving groundwater is avoided for benzo(a)pyrene.
Fluoranthene 5 x 10 ⁻⁶ mg/l Concentrations in the danger of der receiving ground		Hazardous substance. UKTAG Concentrations in groundwater below which the danger of deterioration in the quality of the receiving groundwater is avoided for benzo(a)pyrene.	
Anthracene5 x 10-5mg/lConcentrations in the danger of deter		Hazardous substance. UKTAG Concentrations in groundwater below which the danger of deterioration in the quality of the receiving groundwater is avoided.	
Phenanthrene	5 x 10 ⁻⁸	mg/l	Hazardous substance. UKTAG Concentrations in groundwater below which the danger of deterioration in the quality of the receiving groundwater is avoided for benzo(a)pyrene.

- 6.2.7 Hydrogeological parameters are presented in **Table 6.8**. The Structured Chalk hydraulic conductivity and hydraulic gradient are used, along with the cross-sectional area, to calculate the groundwater flux. The groundwater flux is used to dilute non-hazardous pollutants.
- 6.2.8 The hydraulic conductivity of the fissured Chalk is likely to be significantly higher than the value of 1x10-5 m/s assigned in **Table 6.8** and, based on the data presented in Section 3.4.3, a value of between 1x10-5 m/s and 1x10-3 m/s may be more plausible. However, by using the value at the lower end of the plausible range, a conservative estimate for dilution is derived.
- 6.2.9 The effective porosity of the saturated zone is used to estimate travel times. For a Level 2 assessment only dilution is considered in the saturated zone, not attenuation, and so the travel time is for information only.

Table 6.8: Hydrogeology parameters

Parameter		Value	Unit	Justification
Hydraulic cor Structured Cl	1 x 10⁻⁵	m/s	Calculated infiltration rate from Ground Investigation Report (Document Reference 7.11).	
Hydraulic gra	0.0076	-	Based on topography in the area around the EDBs. From Lidar data	
Effective	Unsaturated zone	0.1		Conservative assumption
porosity of aquifer	fective prosity of			Conservative assumption to ensure rapid travel time within fissured strata.
	EDB 1	7.1	m	Based on average groundwater levels (see Table 3.10) and average elevation of EDB location
Unsaturated	EDB 2	13.1	m	Based on average groundwater levels (see Table 3.10) and average elevation of EDB location
zone thickness	EDB 3B	5.8	m	Based on average groundwater levels (see Table 3.10) and average elevation of EDB location
	EDB 3C	3.8	m	Based on average groundwater levels (see Table 3.10) and average elevation of EDB location
alluvial depos	rganic carbon – sits (applied to 3 and EDB3C)	0.01	-	Assumption of 1%
Fraction of organic carbon – structureless Chalk deposits (applied to EDB5)		0.001	-	Chalk has little organic carbon, so assigned 0.1%.
Unsaturated :	2,385	kg/m ³	Estimated based on particle density of 2,650 and porosity of 0.1 (Freeze & Cherry, 1979)	
Mixing depth		5	m	10 % of the travel distance (50 m)

6.3 Model Results

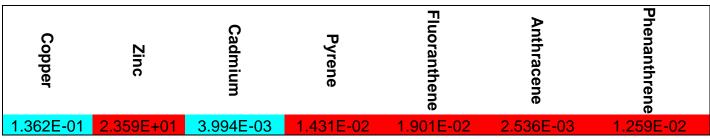

Level 1 Assessment

6.3.1 As detailed in **Section 6.1**, a Level 1 assessment considers processes operating within the source term.

Acute pollution from soluble contaminants

6.3.2 There are no processes operating in the source term for the acute source term. In this case an aqueous source term is considered, and these concentrations are compared directly with the Target Concentrations. The model has been run for EDBs 3B and 3C which have the highest source term concentrations. The predicted concentrations given in **Table 6.9** are the same as the source term concentrations given in **Table 6.4**. These concentrations are lower than the target concentrations given in **Table 6.7**. Thus, we conclude that the risk to groundwater from acute pollution within the EDBs is not significant.

Table 6.9: EDB2 Predicted concentrations (mg/l)


Note blue cells below Target concentration, red cells above target concentration

Chronic pollution from sediments

6.3.3 For the chronic source term, following partitioning between the solid and aqueous phases within the EDB sediment, and limited by the pure phase solubility, **Table 6.10** shows that there is a predicted impact from zinc and all four PAH compounds. These determinants are therefore taken forward to the Level 2 assessment.

Table 6.10: EDB2 Predicted concentrations (mg/l)

Note blue cells below Target concentration, red cells above target concentration

Level 2 Assessment – chronic pollution

EDB 2

6.3.4 EDB 2 is located on alluvium overlying structured Chalk and it is estimated that the unsaturated zone thickness at this location is 13.1 m. The model predicts that no hazardous substances would be predicted to reach the water table at concentrations in excess of the Target Concentration and that there is no pollution by non-hazardous pollutants within 100 years (**Table 6.11**).

Table 6.11: EDB2 Predicted	concentrations (mg/l)
----------------------------	-----------------------

Time(years)	Zinc	Pyrene	Fluoranthene	Anthracene	Phenanthrene
0.1	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
1	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
10	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
100		1.202E-21	4.616E-32	6.259E-26	4.661E-17

Note blue cells below Target concentration, red cells above target concentration

EDB 3B

6.3.5 EDB 3B is located on Made Ground and Head deposits and it is estimated that the unsaturated zone thickness at this location is 5.8 m. The model predicts that no hazardous substances would be predicted to reach the water table at concentrations in excess of the Target Concentration and that there is no pollution by non-hazardous pollutants within 100 years (**Table 6.12**).

Table 6.12: EDB3B Predicted concentrations (mg/l)

Time(years)	Zinc	Pyrene	Fluoranthene	Anthracene	Phenanthrene
0.1	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
1	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
10	4.616E-27	0.000E+00	0.000E+00	1.187E-27	5.555E-23
100	4.206E-01	4.070E-13	1.730E-21	1.019E-17	1.276E-11

Note blue cells below Target concentration, red cells above target concentration

EDB 3C

6.3.6 EDB 3C is located on Made Ground, Alluvium and Structureless Chalk deposits and it is estimated that the unsaturated zone thickness at this location is 3.8 m. The model predicts that no hazardous substances would be predicted to reach the water table at concentrations in excess of the Target Concentration and that there is no pollution by non-hazardous pollutants within 100 years (**Table 6.13**).

Time(years)	Zinc	Pyrene	Fluoranthene	Anthracene	Phenanthrene
0.1	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
1	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
10	4.103E-17	0.000E+00	1.766E-34	7.760E-20	4.866E-16
100	3.338E+00	1.448E-10	1.711E-17	1.274E-14	1.393E-09

Table 6.13: EDB3C Predicted concentrations (mg/l)

Note blue cells below Target concentration, red cells above target concentration

EDB 5

- 6.3.7 EDB 5 is located on chalk, which is assumed to be structureless close to surface and it is estimated that the unsaturated zone thickness at this location is 14 m. The model predicts that no hazardous substances would be predicted to reach the water table at concentrations in excess of the Target Concentration, and that there is no pollution by non-hazardous pollutants within 100 years (**Table 6.14**).
- 6.3.8 Predicted concentrations are presented for 200 and 1,000 years for EDB5. A lower fraction of organic carbon is used in this model as it is assumed there is negligible alluvial material present within the unsaturated zone at this location. This results in higher peak concentrations at longer timescales compared to the

EDB2, EDB3B and EDB3C models. Model runs longer than 1,000 years have not been undertaken as the conceptual model is unlikely to remain valid over greater timescales.

Table 6.14: EDB5 Predicted concentrations (mg/l)

Time(years)	Zinc	Pyrene	Fluoranthene	Anthracene	Phenanthrene
0.1	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
1	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
10	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
200	1.147E-06	2.702E-08	2.089E-12	4.765E-11	8.502E-08
1000	6.090E-01	2.702E-08	2.089E-12	4.765E-11	8.502E-08

Note blue cells below Target concentration, red cells above target concentration

Sensitivity analysis

6.3.9 In order to demonstrate model sensitivity to key parameters, the EDB 3B base case model has been selected. We note that similar relative changes in predicted concentrations would be found for all the models and thus it is only necessary to run sensitivity analysis on one of the EDB models.

Fraction of organic carbon

6.3.10 The fraction of organic carbon is decreased by an order of magnitude from 0.01 to 0.001. The effect of this is to decrease retardation of organic compounds in the unsaturated zone by an order of magnitude, which allows less time for degradation to occur. Model results (**Table 6.15**) show that decreasing the fraction of organic carbon results in predicted concentrations rising by many orders of magnitude which demonstrates that the model is sensitive to this parameter. Pyrene and phenanthrene concentrations are predicted to be higher than the Target Concentration. Note that metals are not assessed as the model does not use fraction of organic carbon to estimate metal retardation rates.

	Target concentration	0.01 (base case)	0.001 (sens run 1)
Pyrene	5.000E-06	4.070E-13	8.102E-05
Fluoranthene	5.000E-05	1.730E-21	2.697E-07
Anthracene	5.000E-05	1.019E-17	8.754E-07
Phenanthrene	5.000E-06	1.276E-11	1.517E-04

Table 6.15: Sensitivity run 1: fraction of organic carbon (mg/l) at 100 years

Concentrations given in bold exceed the Target Concentration

Infiltration rate

- 6.3.11 In the base case model, the superficial strata hydraulic conductivity is assumed to be limiting the infiltration rate when the EDBs are full of water, and it is further considered that the EDBs are full of water for 50% of each year. For this sensitivity run, it is assumed that the EDBs are full of water for 100% of the year i.e. the infiltration rate is solely limited by the unsaturated zone hydraulic conductivity.
- 6.3.12 Model results (**Table 6.16**) shows that increasing the infiltration rate increases predicted concentrations. The reason for this is twofold. Firstly, for hazardous substances, the contaminants spend a shorter period within the unsaturated zone where they degrade. The retarded travel time non-hazardous pollutants through the unsaturated zone is decreased.
- 6.3.13 Secondly, for non-hazardous pollutants, the greater flux through the unsaturated zone results in a decrease in dilution applied at the water table.
- 6.3.14 The results show that the PAH compounds remain well below the Target Concentrations, but zinc is predicted to slightly exceed it.

	Target concentration	50% (base case)	100% (sens run 2a)
Zinc	5.000E+00	4.206E-01	7.894E+00
Pyrene	5.000E-06	4.070E-13	2.678E-09
Fluoranthene	5.000E-05	1.730E-21	2.359E-15
Anthracene	5.000E-05	1.019E-17	5.761E-13
Phenanthrene	5.000E-06	1.276E-11	1.691E-08

Table 6.16: Sensitivity run 2a: infiltration rate and unsaturated zone hydraulic conductivity (mg/l) at 100 years

Concentrations given in bold exceed the Target Concentration

Unsaturated zone thickness

- 6.3.15 For EDB 3B, the unsaturated zone has been estimated at 5.8 m thick. For this sensitivity run, the unsaturated zone thickness has been increased by 5 m to 10.8 m.
- 6.3.16 Model results (**Table 6.17**) show a decrease in concentrations for all contaminants. This is due to the longer travel time within the unsaturated zone pathway segment resulting in longer breakthrough times. We note that the maximum concentration (at any time) for the PAH compounds is reduced as the longer time spent in the unsaturated zone provides more time for degradation. For zinc, however, which does not degrade, breakthrough would eventually occur to the same concentrations as in the base case model.

Table 6.17: Sensitivity run 3: unsaturated zone thickness (mg/l) at 100 years

	Target concentration	5.8 m (base case)	10.8 m (sens run 3)
Zinc	5.000E+00	4.206E-01	1.535E-03
Pyrene	5.000E-06	4.070E-13	5.244E-19
Fluoranthene	5.000E-05	1.730E-21	3.758E-29
Anthracene	5.000E-05	1.019E-17	1.144E-23
Phenanthrene	5.000E-06	1.276E-11	1.475E-15

7 Conclusions and recommendations

7.1 Conclusions

- 7.1.1 There are a number of potential sources of contamination within and adjacent to the Application Boundary. These include landfills, a former gasworks and ironworks, petrol stations, railways and land with mixed industrial uses. On the basis of the soil and water quality data obtained to date by the Scheme, these potential sources have been assessed as detailed in a Controlled Waters Risk Assessment in Chapter 9 (Geology and Soils) of the ES (Document Reference 6.1) and it was concluded that the potential for significant contamination to groundwater from these sources is low.
- 7.1.2 Some material will need to be excavated as part of the Scheme. It is envisaged that all this material will be used to raise levels along the eastern side of the Application Boundary and that there will be no surplus material from the Scheme.
- 7.1.3 GI has shown that there is a significant quantity of Made Ground within the Application Boundary, which is probably associated with previous road scheme construction.
- 7.1.4 On the basis of the soil and water quality data obtained to date by the Scheme, it is considered unlikely that placement of excavated material to raise levels will result in significant mobilisation of contamination. Thus, whilst no significant risk to human health or controlled waters is currently assessed for the in-situ materials, it is also considered that there will be no significant risk following excavation and placement.
- 7.1.5 The most significant risk to groundwater from the Scheme is considered to be the road drainage. Considerable thought has been put into designing an upgraded road drainage system, with as much drainage as possible captured and discharged to the EDBs. Where levels permit, discharge is routed first to a lined EDB for initial settlement and attenuation of contaminants, followed by discharge to un-lined and vegetated EDBs for further attenuation. Whilst the un-lined EDBs are designed to drain to ground, it is expected that a significant proportion of the discharge following storm events will be routed to the River Itchen.
- 7.1.6 A HEWRAT assessment has been undertaken for each of the EDBs receiving highways drainage from new road sections. The results of the screening assessment show that all but one of the currently proposed Extended Detention Basins (EDT) have a 'medium risk' to groundwater and one has a high risk. In order to mitigate against the high risk EDB, it is proposed that this EDB will be lined, thus preventing discharge to groundwater. On this basis a DQRA has been undertaken to further assess the risk from the un-lined EDBs 2, 3B and 3C. In addition, given the proximity of the Shoulder of Mutton private water supply to EDB 5, this Basin has also been assessed in the DQRA.

- 7.1.7 Acute risk from soluble contaminants present in the EDBs has been assessed as low. The contaminant concentrations in the EDBs, as derived from the HEWRAT assessment are below the UK DWS and thus pose no significant risk to groundwater.
- 7.1.8 The models demonstrate that none of the EDBs are likely to result in an impact on groundwater from determinants present within the sediment lining the base of the EDBs (chronic risk).
- 7.1.9 For the hazardous PAH compounds, the aqueous source term concentration leached from the EDB sediments is limited by the determinant pure phase solubility and the fact that these determinants are highly sorbed onto the sediment matrix. Thus, concentrations leaching from the sediment are modest. The model shows that there is likely to be a sufficient thickness of unsaturated zone, comprising material containing sufficient organic carbon, to provide sufficient attenuation and ensure that there is no discharge to the water table.
- 7.1.10 Copper and cadmium also sorb highly to the EDB sediment such that aqueous concentrations in the EDBs are unlikely to reach concentrations that would cause pollution of groundwater. Predicted aqueous source term zinc concentrations are higher, but attenuation within the unsaturated zone, combined with dilution in the receiving groundwater is sufficient to ensure there is no pollution by this determinant.
- 7.1.11 Sensitivity analysis has been undertaken of the DQRA models. These show that the models are sensitive to the faction of organic carbon (for organic compounds), infiltration rate and unsaturated zone thickness. Further data on these parameters should be collected as detailed in the next section.

7.2 Recommendations

- 7.2.1 Stantec has proposed additional GI at each of the EDBs. Geological data obtained from this GI will provide a better understanding of the superficial strata likely to underlie each of these structures. Once these data are available, the HgRA should be reviewed and updated based on the complete dataset.
- 7.2.2 A number of the boreholes will be completed as groundwater monitoring wells. Timeseries monitoring data will provide more confidence on the unsaturated zone thickness at each of these structures.
- 7.2.3 It is proposed to undertake soakaway tests at the proposed EDB locations. This will inform the understanding of the unsaturated zone hydraulic conductivity.
- 7.2.4 It is recommended that soil samples are taken from each of the strata encountered and subject to laboratory testing for fraction of organic carbon. These data can then be used to refine the DQRA model and inform predictions of the risk to groundwater from the Scheme's drainage design.

8 References

Allen, D. J., Brewerton, L. J., Coleby, L. M., Gibbs, B. R., Lewis, M. A., MacDonald, A. M., & Williams, A. T. (1997). The physical properties of major aquifers in England and Wales. British Geological Survey Technical Report WD/97/34.

Booth, K., Farrant, A. R., Hopson, P. M., Woods, M. A., Evans, D. J., & Wilskinson, I. (2008). Geology of the Winchester district. Sheet description of the British Geological Survey, 1:50 000 Series Sheet 299 (England and Wales).

British Geological Survey. (2002). Winchester. England and Wales Sheet 299. Solid and Drift Geology. 1:50 000. (Keyworth, Nottingham: British Geology Survey).

CIRIA. (2021). Contaminated Land Risk Assessment. A Guide to Good Practice.

Entec. (2002). River Itchen Catchment Groundwater Modelling Study Phase 2.

Envirocheck. (2016). Envirocheck Report, Site at Winnall Down Farm HampshireOrder Number 85178192_1_1 fo WSP.

Environment Agency. (2006). Remedial Targets Methodology. Hydrogeological Risk Assessment for Land Contamination.

Environment Agency. (2018). The Environment Agency's approach to groundwater protection V1.2.

Environment Agency. (2019). Guidance Groundwater source protection zones(SPZs).RetrievedAugust2021,fromhttps://www.gov.uk/guidance/groundwater-source-protection-zones-spzs

Environment Agency. (2021). https://www.gov.uk/government/publications/land-contamination-riskmanagement-lcrm.

ESI. (2001). Benchmarking RAM: ESI'S Groundwater Risk Assessment Tool. Report Reference 5303R1D1.

ESI. (2008). RAM 3 User Guide.

Freeze, R. A., & Cherry, J. A. (1979). Groundwater. Prentice-Hall.

Highways England. (2015). HEWRAT V2.0 Help guide.

Institute of Geological Sciences and Southern Water Authority. (1979). Hydrogeological map of Hampshire and the Isle of Wight, Scale 1:100 000.

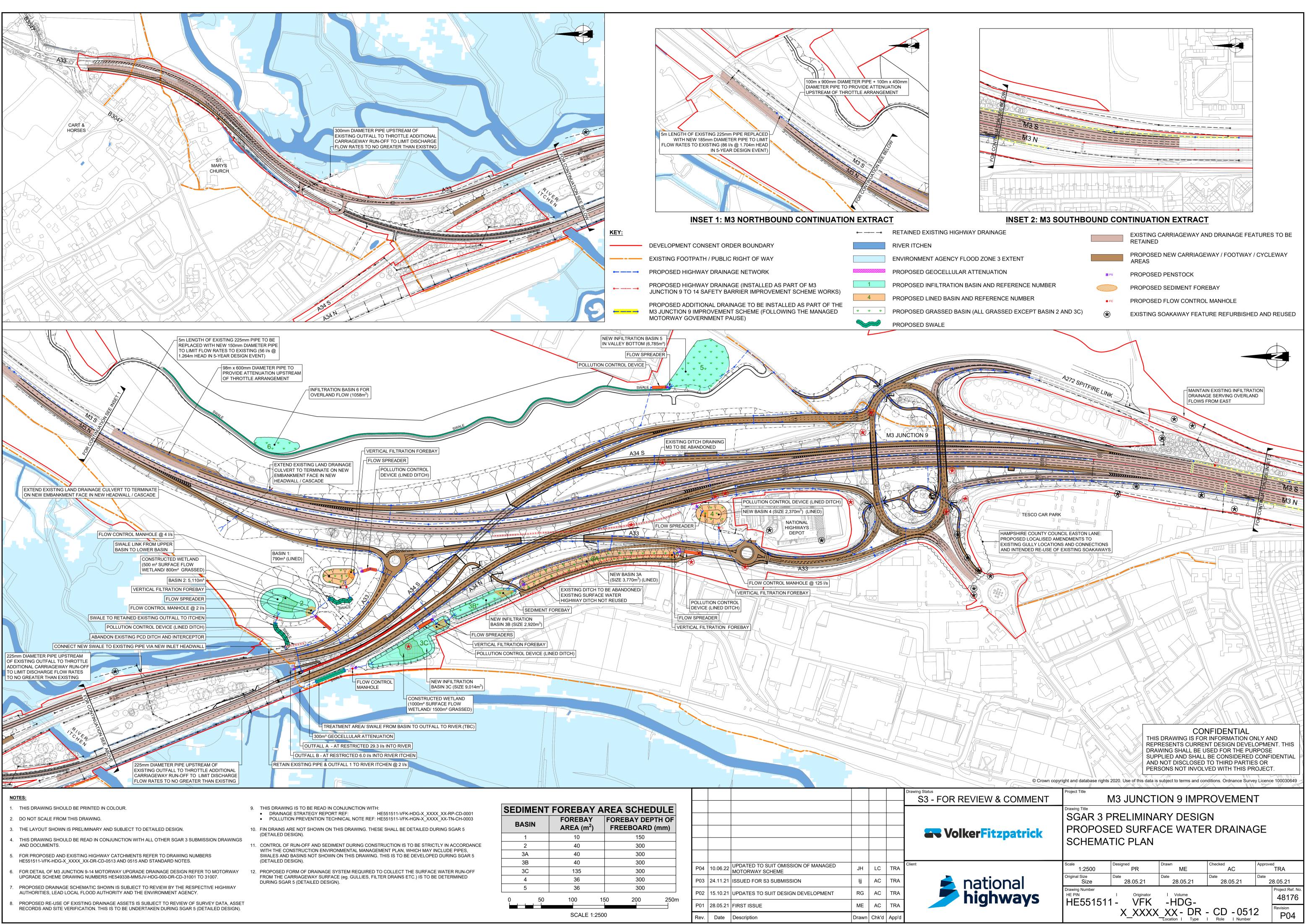
NRFA. (2021). 42016 - Itchen at Easton. Retrieved August 2021, from https://nrfa.ceh.ac.uk/data/station/spatial/42016

Reading Agricultural Consultants. (2021). Agricultural Land Classification and Soil Resources at M3 Junction 9 Winchester. For Stantec UK Limited.

Robinson, P. C., & Hodgkinson, D. P. (1996). Exact solutions for radionuclide transport in the presence of parameter uncertainty. Technical Report AERE R 12125. Harwell Laboratory, Oxfordshire.

Stantec. (2021). M3 Junction 9 improvement scheme - Preliminary Environmental Information Report (PEIR).

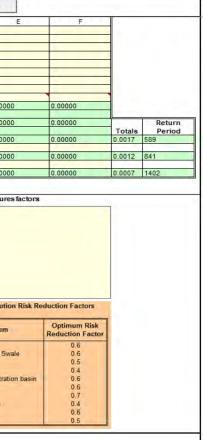
UKTAG. (2016). UK Technical Advisory Group on the Water Framework Directive: Technical report on Groundwater Hazardous Substances.


WPK. (2007). Wastewater discharges to ground Morestead Road Wastewater Treatment Works Groundwater Investigations - Interpretative Report prepared for Southern Water.

WSP. (2017). Preliminary Sources Study Report.

Appendix A

HE551511-VFK-HDG-X_XXXX_XX-DR-CD-0512_Drainage Schematic Plan


Appendix B HEWRAT screening assessments

Basin 1 HEWRAT Infiltration to Groundwater

Runoff to Watercourses			Basin 1 HE	WRAT Infiltrat	tion to Ground	water						Basin 1 H	IEWRA
EQS - Annual Average Conce	Zinc	Acute Impact	Alert. Protected Area.	🚖 h	ighways ngland			Reset GW Assessment	Go To Interface				
0.00 Step 2	0.00 ug/l	Copper Zinc	Sediment deposition for this site is judged a	Group	ngland ndwater Asses	ssment		Reset GW Assessment	Go To Intellace				
0.00	0.00 ug/l	Pass Pass	Accumulating? No 0.14 Low flow V Extensive? No - Deposition	m/s ndex								Weighted	
Step 3					Component Number	t	Weighting Factor	Property or Parameter		Risk Score	Component score	component	
Road number		HE Area / DBFO number			1		10	Traffic flow	<=50,000 AADT		1	10	
Assessment type OS grid reference of assessment point (m)	Non-cumulative assessment (single outfal Easting	Northing			· ·	_	10	Traile now	<-30,000 AAD1			10	
OS grid reference of outfall structure (m) Outfall number	Easting	Northing List of outfalls in cumulative		_	2	SOURCE	10	Rainfall depth (annual averages)	>740 to <1060 mm rainfall		2	20	
Receiving watercourse EA receiving waterD etailed River Network ID		assessment Assessor and affiliation			3		10	Drainage area ratio	<=50		1	10	
Date of assessment		Version of assessment											
No te s					4		15	Infiltration method	"Region", shallow infiltration	systems (e.g. infiltration basin)	2	30	
					5		20	Unsaturated zone	Depth to water table <15 m t	io >5 m	2	40	
Step 1 Runoff Quality AADT >10,000 and <50,0	Climatic red	gion Warm Wet Rainfall site	Southampton (SAAR 820mm)			-		Flow type (Incorporates flow type		/ fissures (e.g. well consolidated sedimentary			
Step 2 River Impacts					6	PATHWAY	20	an effective grain size)	deposits, igneous and metar coarse sand and coarser)	morphic rocks or unconsolidated deposits of w	ery 3	60	
Annual Q ₉₅ river now (m-/s)	2.8	Freshwater EQS limits:			7		5	Unsaturated Zone Clay Content	<=1% clay minerals		3	15	
(Enter zero in Annual Q ₈₅ Impermeable road area draine river flow box to assess Step 1 runoff quality Permeable area draining to ou		Bioavailable dissolved copper (µg/l) Bioavailable dissolved zinc (µg/l)	1 D			-	-					15	
Step 1 runoff quality Permeable area draining to ou only) Base Flow Index (BFI)	0.89	Is the discharge in or within 1 km upstream of a pro		_	8	_	5	Organic Carbon	<=1% SOM		3	15	
	Medium = 50-200 CaCO3/I			_	9		5	Unsaturated zone soil pH	pH <8 to >5		2	10	
		For dissolved copper only Ambient back		0									
For sediment impact only Is there a downstream structur	re, lake, pond or canal that reduces the velocit	ty within 100m of the point of discharge?	No 🔻 D						TOTAL SCORE RISK SCREENING LEVEL			210 Medium	
• Tier 2 Bed width (m)		Manning's n 0.07 D Side slop	be (m/m) 0.5 Long slope (m/m) 0.0001	-								median	
Step 3 Mitigation		E stimated effective ness Treatment for Attenuation for solubles -	Settlement of										
	Briefdescription	Treatment for Attenuation for solubles - solubles (%) restricted discharge rate (M											
Existing measures		0 D No restriction											
Propo sed measures		50 No restriction											
Runoff to Watercourses			Basin 1 HE	WRAT Spillage								Basin 1 H	IEWR/
	To Top Go To Intertace			🟓 h	ighways ngland			View Parameters	Reset Spillage Risk	Go To Interface			
Summary of predictions Soluble - Copper	- Acute Impact Zinc Copper	<u>Sediment – Chroni</u> Zinc Cadmium Total PAH Pyren	<u>o Impact</u> e – Fluoranthene Anthracene Phenanthi	ene				A (main road)	B C	D E	F	0	_
Prediction of impact Step1 Step2				D1 W	Vater body type ength of road dr	aining to outfall (m))	Surface watercourse 1,000					
Step3				D3 R	toad Type (A-roa A road, is site u	ad or Motorway)		A Rural					ľ
in Runoff Step 1	0			D5 Ju	unction type	se time for emerge	ncv services)	Roundabout					ł
Copper	Step 1 Zinc Copper	Zinc Cadmium Total PAH Pyren	e Fluoranthene Anthracene Phenanth	D7 T	raffic flow (AAD	OT two way)		16,731			-		
Allowable Exceedances/year 1	ST24	Toxicity Thresh		D8 S	pillage factor (no	o/10° HGVkm/year)	3.09					1
No. of exceedances/year 67.90 No. of exceedances/worst year 89	62.20 75.30 75 99	98.00 1.50 17.00 56.00 120 4 25 71	17.00 14.80 31.10 25 22 39	D10 P	lisk of accidental robability factor			0.00283 0.0000 0.60		0.00000 0.00000	0.00000		
	IST6				lisk of pollution in s risk greater tha			0.00170 0.0000 No	2.	0.00000 0.00000		Totals Period	
	25.30				teturn period with xisting measures	hout pollution reduces factor	ction measure	s 0.00170 0.0000 0.7	000000	0.00000 0.00000	0.00000 0	.0017 589	
No. of exceedances/worst year 28		(malka) (malka) (valka) (valka) (valka) (valka) (valka	D15 R		h existing pollution	reduction	0.00119 0.0000	0.00000	0.00000 0.00000	0.00000 0	.0012 841	-
Thresholds BST24 21 Thresholds BST6 42	92 Toxicity 197	315 3.5 16770 875	2355 245 515			posed Pollution red	luction measu	res 0.00071 0.0000	0.00000	0.00000 0.00000	0.00000 0	.0007 1402	
Event Statistics Mean 27.32	84.71 349	1168 1 11065 1914	1837 117 518										
90%ile 52.94 95%ile 68.76	255.14 968	2781 1 28184 4876 3569 2 56234 9729	9335 596 2632	Ju	ustification for cl	hoice of existing i	measurestac	tors	Justification for	choice of proposed measures factors			
99%ile 113.86	446.19 1501	5477 4 112202 19411	18626 1189 5251										
In River (no mitigation) Step 2	Step 2												
Copper	Zinc ST24												
Allowable Exceedances/year 1 No. of exceedances/year 0	1 0 Velocity	0.14 m/s Tier 2 is used fo	r the extendation										
No. of exceedances/worst year 0 No. of exceedances/summer 0	0 0 0 0 0		The calculation										
No. of exceedances/worst summer 0	0	settlement											
, i i i i i i i i i i i i i i i i i i i	sT6	%			C. 111-11- E-					Indicative Pollution Risk Rec for Spillages	Juction Factors		
	0.5				Spillage Fa	idental Spillages				System	Optimum Risk Reduction Factor		
No. of exceedances/worst year 0 No. of exceedances/summer 0	0				(Billion H		lotorways	Rural Trunk Urban Tr		Filter Drain	0.6		
No. of exceedances/worst summer 0					Slip road		0.36 0.43	0.29 0.31 0.83 0.36		Grassed Ditch / Swale Pond	0.6 0.5		
Annual average concentration (ug/l) 0.00	0.00				Roundabout Cross road		3.09	3.09 5.35 0.88 1.46		Wetland Soakaway / Infiltration basin	0.4 0.6		
Thresholds <i>BST24</i> (ug/l) Thresholds <i>BST6</i> 42	92 184				Side road		0.37	0.93 1.81 0.45 0.85		Sediment Trap	0.6		
Event Statistics Mean 0.00	0.00				Trana		and 1	0.00		Unlined Ditch Penstock / valve	0.7 0.4		
90×ile 0.00 95×ile 0.00	0.00									Notched Weir Oil Separator	0.6 0.5		
99%ile 0.01	0.02			-	and and a state of the state	he seed to a set	fine with more	P 11 2 10					-
In River (with mitigation) Step 3				The wo	orksneet should	be read in conjunc	tion with DMR	11.3.10.					
Copper	Zinc ST24												
Allowable Exceedances/year 1 No. of exceedances/year 0.00	0.00												
No. of exceedances/worst year 0 No. of exceedances/summer 0	0 0 0 0	-											

Basin 1 HEWRAT

VRAT

Basin 2 HEWRAT Infiltration to Groundwater

Basin 2 HEWRAT Spillage Risks

		e.,	luble			Sedimen	
			Table			ocumen	t - Chronic Impact
	EQS - Annual Average C			Acute	e Impact		
	Copper 0.00	Zinc 0.00		0	Zinc	Alert. P	Protected Area.
Step 2	0.00	0.00	ugłi	Copper	Zinc	Sediment depositi	ion for this site is judged as:
				Pass	Pass	Accumulating? N	
	0.00	0.00	ugł			Extensive? N	lo - Deposition Inde
Step 3							
oad number				HE Area / DBF	0 number		
ssessmenttype		Non-cumulative	assessment (single outfall)				
S grid reference of assessmen	nt point (m)	Easting			Northing		
S grid reference of outfall struc	ture (m)	Easting			Northing		
utfall number				List of out fails in	n cumulative		
eceiving watercourse				assessment			
	erNetwork ID			Assessor and a	affiliation		
A receiving water Detailed Riv							
ate of assessment otes	AADT >10,000 and <5	1,000	▼ Climatic regic	Version of asse	Rainfall site	Southampton (SAAR 820)	nm) -
A receiving water Detailed Riv ate of assessment otes Step 1 Runoff Quality Step 2 River Impacts				on Warm Wet	Rainfall site	Southampton (SAAR 820)	nm) -
ate of assessment otes Step 1 Runoff Quality Step 2 River Impacts	Annual Q ₉₅ river flow (m ³ /s)	2.6	on Warm Wet	Reinfall site		mm) i
ate ofassessment otes Step 1 Runoff Quality)	2.6	on Warm Wet	Rainfall site	1	nm) .
ate of assessment otes Step 1 Runoff Quality Step 2 River Impacts (Enter zero in Annual Q ₁₅ (river flow box to assess Step 1 runoff quality	Annual Q ₉₅ river flow (m ³ /s) sined (hs)	2.6	n Warm Wet	Reinfall site		nm) 💽
ate of assessment otes Step 1 Runoff Quality Step 2 River Impacts (Enter zero in Annual Q _{ins} river flow box to assess	Annual Q ₉₅ river flow (m ³ /s) sined (hs)	2.6	Preshwater EQS limi Bioavailable dis Bioavailable dis	Rainfall site its: ssolved copper (µg/l) ssolved zinc (µg/l)	1	
ate of assessment otes Step 1 Runoff Quality Step 2 River Impacts (Enter zero in Annual Q ₁₅ (river flow box to assess Step 1 runoff quality	Annual Q ₉₅ river flow (m ³ /s Impermeable road area dr Permeable area draining t) sined (hs)	2.6 1.24 0.895 0.89	Preshwater EQS limi Bioavailable dis Bioavailable dis	Rainfall site its: ssolved copper (µg/l) ssolved zinc (µg/l) vithin 1 km upstream of a p	1 D	on? Yes •
ate of assessment otes Step 1 Runoff Quality Step 2 River Impacts (Enter zero in Annual Q _{ato} river flow box to assess Step 1 runoff quality only)	Annual Q ₀₅ river flow (m ³ /s Impermeable road area dr Permeable area draining t Base Flow Index (BFI) Water hardness) iined (hs) o outfall (hs) Medum = 50-200 Cat	2.6 1.24 0.895 0.89	Freshwater EQS limi Bioavailable dis Bioavailable dis Is the discharge in or w For dissolved co	Rainfall site its: ssolved copper (μg/l) ssolved zinc (μg/l) vithin 1 km upstream of a p opper only Ambient be	1 0 10.9 0	on? Yes •
ate of assessment otes Step 1 Runoff Quality Step 2 River Impacts (Enter zero in Annual Q ₁₅ (Enter zero in Annual Q ₁₅ triver flow box to assess Step 1 runoff quality only) For dissolved zinc only	Annual Q _{os} river flow (m ³ /s Impermeable road area dr Permeable area draining t Base Flow Index (BFI) Water hardness Is there a downstream stru-) iined (hs) o outfall (hs) Medum = 50-200 Cat	2.6 1.24 0.595 0.69	Freshwater EQS limi Bioavailable dis Bioavailable dis Is the discharge in or w For dissolved co	Rainfall site its: ssolved copper (μg/l) ssolved zinc (μg/l) vithin 1 km upstream of a p opper only Ambient be	1 D 10.9 D protected site for conservation ackground concentration (µg	on? Yes •
ate of assessment otes Step 1 Runoff Quality Step 2 River Impacts (Enter zero in Annual Q ₁₅ (Enter zero in Annual Q ₁₅ triver flow box to assess Step 1 runoff quality only) For dissolved zinc only	Annual Q _{os} river flow (m ³ /s Impermeable road area dr Permeable area draining t Base Flow Index (BFI) Water hardness Is there a downstream stru-) ined (hs) o outfall (hs) <u>Medum = 50-200 Car</u> cture, lake, pond or ca river width (m)	2.8 1.24 0.695 0.09 COS4 Inal that reduces the velocity 5	Freshwater EQS limi Bioavailable dis Bioavailable dis Is the discharge in or w For dissolved co	Rainfall site its: soolved copper (µg/l) ssolved zinc (µg/l) vithin 1 km upstream of a p opper only Ambient ba f discharge?	1 0 10.9 0 protected site for conservation ackground concentration (µg	on? Yes •

omponent Number		Weighting Factor	Property or Parameter	Risk Score	Component score	Weighted component score
1		10	Traffic flow	<=50,000 AADT	1	10
2	SOURCE	10	Rainfall depth (annual averages)	>740 to <1060 mm rainfall	2	20
3	10		Drainage area ratio	<=50	1	10
4		15	Infiltration method	"Region", shallow infiltration systems (e.g. infiltration basin)	2	30
5		20	Unsaturated zone	Depth to water table <=5 m	3	60
6	PATHWAY	20	Flow type (Incorporates flow type an effective grain size)	Dominantly intergranular flow (e.g. non-fractured consolidated deposits or unconsolidated deposits of fine-medium sand or finer)	1	20
7	PATHWAT	5	Unsaturated Zone Clay Content	<=1% clay minerals	3	15
8		5	Organic Carbon	<=1% SOM	3	15
9		5	Unsaturated zone soil pH	pH <8 to >5	2	10
				TOTAL SCORE		190
				RISK SCREENING LEVEL		Medium

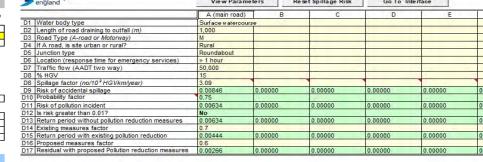
Runoff to Watercourses DETAILED RESULTS

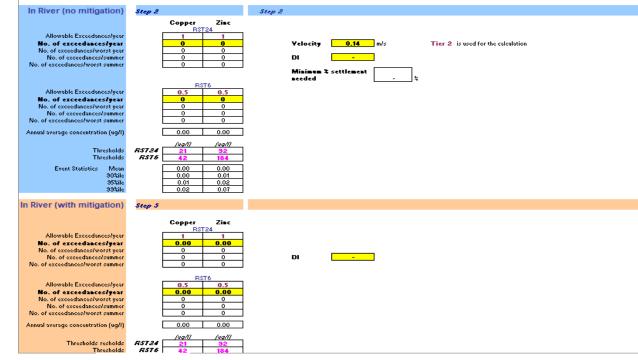
In Runoff Step 1 Step 1 Copper Zinc RST24 1 1 67.90 62.20 83 75
 Copper
 Zinc
 Cadmium
 Total PAH
 Pyrene
 Fluoranthene
 Anthracene
 Phenanthrene

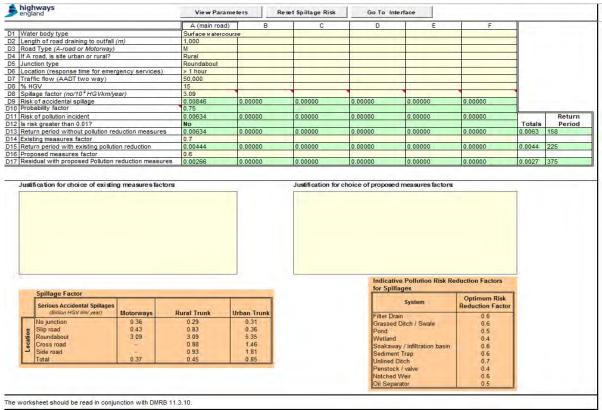
 1
 1
 1
 1
 1
 1
 1
 1

 75.30
 38.00
 15.00
 17.000
 16.00
 15.10
 31
 10
 33
 39
 120
 4
 25
 71
 25
 22
 39
 Allowable Exceedan No. of exceedances/year No. of exceedances/worst yea Allowable Exceedances/year **No. of exceedances/year** No. of exceedances/year RST6 1 1 21.70 25.30 28 29
 /ug/li>
 /ug/li>
 /ug/li

 Thresholds
 R\$7.24
 21
 32


 Thresholds
 R\$7.6
 42
 184
 /ma/kaj /ma/kaj /ma/kaj /wa/kaj /wa/ka Event Statistics Mean 30%ile 35%ile 39%ile 27.32 84.71 52.94 172.88 68.76 255.14 113.86 446.19
 349
 1168
 1
 11065
 1914
 1837


 766
 2781
 1
 28184
 4876
 4673


 368
 3563
 2
 56234
 3729
 3335

 1501
 54177
 4
 112202
 13411
 16862
 299 596 1189

Back To Top Go To Interface

Basin 2 HEWRAT

Basin 2 HFWRAT

Runoff to Watercourses highways

Basin 3A HEWRAT	Infiltration to Groundwater	

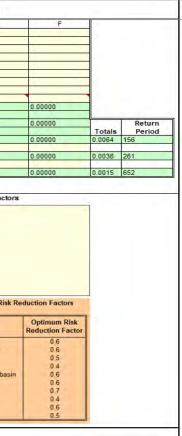
highways england	Highways England								
		So	luble					Sedimen	t - Chronic Impact
	EQS - Annual Average Co	ncentration			Acute Im	npact			
	Copper	Zinc						Alert, P	rotected Area.
Step 2	0.00	0.02	ugłi		Copper	Zinc			ion for this site is judged a
Step 2					Pass	Pass		cumulating?	
Step 3	0.00	0.01	ug/l					tensive? N	
Road number					HE Area / DBFO n	umber			
Assessment type		Non-cumulative	assessment (single ou	(tfall)					
OS grid reference of assessmer	nt point (m)	Easting				Northing			
OS grid reference of outfall struc	ture (m)	Easting				Northing			
Outfall number					List of outfalls in c				
Receiving watercourse					assessment				
A receiving water Detailed Riv	erNetwork ID				Assessor and a fili	ation			
ate of assessment	or restriction to				Version of assess				
lotes					Version or disactasi	none			
Step 1 Runoff Quality	AADT >=100,000		Climatic	region Wa	rm Wet 🔹	Rainfall site	South	hampton (SAAR 820	nnn)
Step 1 Runoff Quality Step 2 River Impacts						Rainfall site	South	hampton (SAAR 820	mm) _
	AADT >=100,000 Annual Q ₉₅ river flow (m ³ /5)		Climatic		rm Wet	Rainfall site	South	hampton (SAAR 820	mm) .
Step 2 River Impacts		ned (hs)					South	hampton (SAAR 820	nnni)
Step 2 River Impacts (Enter zero in Annual Q ₈₅ river flow box to assess Step 1 runoff quality	Annual Q ₉₅ river flow (m ³ /s)		2.6		reshwater EQS limits:	lved copper (µg/l)	South		mm) -
Step 2 River Impacts	Annual Q ₉₅ river flow (m ³ /s)		2.6	Fr	reshwater EQS limits: Bioavailable disso	lved copper (μg/l) lved zinc (μg/l)		1 D	
Step 2 River Impacts (Enter zero in Annual Q ₈₅ river flow box to assess Step 1 runoff quality	Annual Q ₉₅ river flow (m ³ /5) Impermeable road area drain Permeable area draining to		2.6 5.856 0.435 0.99	Fr	reshwater EQS limits: Bioavailable disso Bioavailable disso	lved copper (µg/l) lved zinc (µg/l) in 1 km upstream of a	a protected sit	1 D	on? Yes
Step 2 River Impacts (Enter zero in Annual Q ₈₅ river flow box to assess Step 1 runoff quality only)	Annual Q ₈₅ river flow (m ³ /s) Impermeable road area drain Permeable area draining to Base Flow Index (BFI)	outfall (ha) Medium = 50-200 Cal	2.6 5.856 0.425 0.69	Fr	reshwater EQS limits: Bioavailable disso Bioavailable disso ae disoharge in or withi For dissolved copp	lved copper (µg/l) lved zinc (µg/l) in 1 km upstream of <i>i</i> er only Ambient	a protected sit	1 D 10.9 D te for conservation	on? Yes
Step 2 River Impacts (Enter zero in Annual Q ₈₅ river flow box to assess Step 1 runoff quality only) For dissolved zinc only	Annual Q _{as} river flow (m ³ /s) Impermeable road area drain Permeable area draining to Base Flow Index (BFI) Water hardness Is there a downstream struct	outfall (ha) Medium = 50-200 Cal	2.6 5.856 0.425 0.69	Fr	reshwater EQS limits: Bioavailable disso Bioavailable disso ae disoharge in or withi For dissolved copp	lved copper (µg/l) lved zinc (µg/l) in 1 km upstream of <i>i</i> er only Ambient	a protected sit	1 0 10.9 0 te for conservation concentration (µg	on? Yes
Step 2 River Impacts (Enter zero in Annual Q ₈₅ river flow box to assess Step 1 runoff quality only) For dissolved zinc only	Annual Q _{as} river flow (m ³ /s) Impermeable road area drain Permeable area draining to Base Flow Index (BFI) Water hardness Is there a downstream struct	Međium = 50-200 Ga ture, lake, pond or ca ver width (m)	2.6 5.856 0.435 0.89 CC34	Fr	reshwater EQS limits: Bioavailable disso Bioavailable disso te discharge in or withi For dissolved copp 00m of the point of dis	ived copper (μg/l) ived zinc (μg/l) in 1 km upstream of ι er only Ambient icharge?	a protected sit	1 1Ω9 1Ω9 te for conservation (μg	on? Yes
Step 2 River Impacts (Enter zero in Annual Q ₈₅ river flow box to assess Step 1 runoff quality only) For dissolved zinc only	Annual Q _{as} river flow (m ³ /s) Impermeable road area drain Permeable area draining to Base Flow Index (BFI) Water hardness Is there a downstream struct C Tier 1 Estimated ri	Međium = 50-200 Ga ture, lake, pond or ca ver width (m)	2.6 5.656 0.435 0.89 CC34 CC34 CC34 CC34	Fr	reshwater EQS limits: Bioavailable disso Bioavailable disso te discharge in or withi For dissolved copp 00m of the point of dis is n 0.07	lved copper (μg/l) lved zinc (μg/l) in 1 km upstream of i er only Ambient icharge? Side	a protected sit background c	1 1Ω9 1Ω9 te for conservation (μg	эп? <u>Yes</u> , /Л) <u>0</u> С
Step 2 River Impacts (Enter zero in Annual Q ₈₅ river flow box to assess Step 1 runoff quality only) For dissolved zinc only For sediment impact only	Annual Q _{as} river flow (m ³ /s) Impermeable road area drain Permeable area draining to Base Flow Index (BFI) Water hardness Is there a downstream struct C Tier 1 Estimated ri	Međium = 50-200 Ga ture, lake, pond or ca ver width (m)	2.6 5.656 0.435 0.89 CC34 CC34 CC34 CC34	Fr	reshwater EQS limits: Bioavailable disso Bioavailable disso e discharge in or withi For dissolved copp 00m of the point of dis s n 0.07	Ived copper (µg/l) Ived zinc (µg/l) in 1 km upstream of <i>i</i> er only Ambient icharge? Side Estimated effectivent	a protected sit background c : slope (m/m)	1 0.9 0 te for conservation	рл? <u>Yes</u> ,
Step 2 River Impacts (Enter zero in Annual Q ₈₅ river flow box to assess Step 1 runoff quality only) For dissolved zinc only For sediment impact only	Annual Q _{as} river flow (m ³ /s) Impermeable road area drain Permeable area draining to Base Flow Index (BFI) Water hardness Is there a downstream struct C Tier 1 Estimated ri	Međium = 50-200 Ga ture, lake, pond or ca ver width (m)	2.6 5.656 0.435 0.89 CC34 CC34 CC34 CC34	Fr	reshwater EQS limits: Bioavailable disso Bioavailable disso he discharge in or within For dissolved copp 00m of the point of dis is n 0.07	lved copper (μg/l) lved zinc (μg/l) in 1 km upstream of i er only Ambient icharge? Side	a protected sil background c i slope (m/m)	1 1Ω9 1Ω9 te for conservation (μg	эп? <u>Yes</u> , /Л) <u>0</u> С
Step 2 River Impacts (Enter zero in Annual Q ₈₅ river flow box to assess Step 1 runoff quality only) For dissolved zinc only For sediment impact only	Annual Q _{as} river flow (m ³ /s) Impermeable road area drain Permeable area draining to Base Flow Index (BFI) Water hardness Is there a downstream struct C Tier 1 Estimated riv	outfall (ha) Medium = 50-200 Ga ture, lake, pond or ca ver width (m) n)	2.6 5.656 0.435 0.89 CC34 CC34 CC34 CC34	Fr	reshwater EQS limits: Bioavailable disso Bioavailable disso the discharge in or within For dissolved copp 00m of the point of dis is n 0.07 0 Treatment br solubles (%) ret	Ived copper (µg/l) Ived zinc (µg/l) in 1 km upstream of i er only Ambient icharge? Side Estimated effectiven Attenuation for solub	a protected sil background c i slope (m/m)	1 0 10.9 0 te for conservation concentration (µg No • 0 0.5 L otherment of	эп? <u>Yes</u> , /Л) <u>0</u> С

water Assess	sment	Weighting			Component	Weighted
		Factor	Property or Parameter	Risk Score	score	component score
1		10	Traffic flow	>=100,000 AADT	3	30
2	SOURCE	10	Rainfall depth (annual averages)	>740 to <1060 mm rainfall	2	20
3	10		Drainage area ratio	>50 to <150	2	20
4		15	Infiltration method	"Region", shallow infiltration systems (e.g. infiltration basin)	2	30
5		20	Unsaturated zone	Depth to water table <=5 m	3	60
6	PATHWAY	20 Flow type (incorporates flow type an effective grain size) Flow dominated by fractures/ fissures (e.g. well consolidated sedimentary deposits, igneous and metamorphic rocks or unconsolidated deposits of very coarse sand and coarser)				
7	FAIlinai	5	Unsaturated Zone Clay Content	<=1% clay minerals	3	15
8		5	Organic Carbon	<=1% SOM	3	15
9	5		Unsaturated zone soil pH	pH <8 to >5	2	10
				TOTAL SCORE		260
				RISK SCREENING LEVEL		High

Runoff to Watercourses

AILED RESULTS		Back To Top		Go To	Interface							
Summary of predic	tions 5	Soluble - Acu	ite Impac	st				Sediment	- Chronie	Impact		
	_		inc		Copper	Ziac	Cadmium	Total PAH	Pyrene		Anthracene	Phenanthrene
iction of impact Step1 Step2	_											
Step S												
In Runoff	Step 1			Step 1								
		Copper Zi RST24	inc		Copper	Zinc	Cadmium	Total PAH	Pyrene city Threshold	Fluoranthene	Anthracene	Phenanthrene
Allowable Exceedances/year		1	1		1	1	1	1	1	1	1	1
No. of exceedances/year No. of exceedances/worst year			43		113.50 147	124.90 152	6.30 11	17.00 25	56.00 71	17.00 25	14.80 22	31.10 39
		BST6										
Allowable Exceedances/year			1									
No. of exceedances/year No. of exceedances/worst year			<mark>.80</mark> 13									
		[uq/l] [u	q/1)			(mg/kg)	(mq/kq)	(ug/kg)	(vq/kq)	(vq/kq)	(uq/kq)	(vq/kq)
Thresholds Thresholds	RST24 RST6	21 3	2	Tozicit y	197	315	3.5	16770	875	2355	245	515
i nresnoids Event Statistics Mean	- H318 [57.52 26	4.56		766	2676		11065	1914	1837	117	518
30%ile	E	111.45 533	9.93		1573	5762	3	28184	4876	4673	299	1319
35%ile 33%ile	F	144.76 796 239.71 139	5.85 3.53		1875	7101	3	56234 112202	9729 19411	9335 18626	596 1189	2632 5251
River (no mitigation)	Step 2			Step 2								
	-	Copper Zi	inc									
Allowable Exceedances/year	Г	RST24	1									
No. of exceedances/year		0 0	0		Yelocity	0.14	mis	Tier 2	is used for th	calculation		
No. of exceedances/worst year No. of exceedances/summer	F		0		DI	-	1					
. of exceedances/worst summer		0	0		Minimum 7	settlement	- 	1				
					needed	seccement		z				
Allowable Exceedances/year	Г	0.5 0	.5									
No. of exceedances/year No. of exceedances/worst year			0									
No. of exceedances/summer	E	0	0									
. of exceedances/worst summer		•	0									
ual average concentration (ug/l)	L		02									
Thresholds	R\$7.24		<i>q/l)</i>									
Thresholds	R\$76		34									
Event Statistics Mean 30%ile	F		.07									
95%ile	E	0.08 0.	.31									
33%ile	L	0.23 0.	33									
ver (with mitigation)	Step S											
		Copper Zi	inc									
	_	RST24										
Allowable Exceedances/year No. of exceedances/year		1 0.00 0.	1									
No. of exceedances/worst year	F	0	0		DI		1					
No. of exceedances/summer . of exceedances/worst summer	E		0		01	-	_					
		BST6										
Allowable Exceedances/year No. of exceedances/year		0.5 0	.5									

🚖 highways


2	highways england	View Parame	eters	Reset Spillage Risk	Go To I	nterface
		A (main road)	В	C	D	2
D1	Water body type	Surface watercour	se			
D2	Length of road draining to outfall (m)	2,250				
D3	Road Type (A-road or Motorway)	A	1	1	- 1	
D4	If A road, is site urban or rural?	Rural				
D5	Junction type	Roundabout	1			
D6	Location (response time for emergency services)	< 1 hour			-	
D7	Traffic flow (AADT two way)	28,000	1			
D8	% HGV	15		1	1	
D8	Spillage factor (no/10 ^o HGVkm/year)	3.09				
D9	Risk of accidental spillage	0.01066	0.00000	0.00000	0.00000	0.00000
D10	Probability factor	0.60				
D11	Risk of pollution incident	0.00639	0.00000	0.00000	0.00000	0.00000
D12	Is risk greater than 0.01?	No				
D13	Return period without pollution reduction measures	0.00639	0.00000	0.00000	0.00000	0.00000
D14	Existing measures factor	0.6	1 10 1.4			
D15	Return period with existing pollution reduction	0.00384	0.00000	0.00000	0.00000	0.00000
D16	Proposed measures factor	0.4	1		1	
D17	Residual with proposed Pollution reduction measures	0.00153	0.00000	0.00000	0.00000	0.00000

-	fication for choice of existin	g measures fact	tors		Justification	for choice of proposed measures fact
						Indicative Pollution Ris
	Spillage Factor					for Spillages
	Serious Accidental Spillages (Billion HGV km/year)	Motorways	Rural Trunk	Urban Trunk		System
	Serious Accidental Spillages	Motorways 0.36	Rural Trunk 0.29	Urban Trunk 0.31		Filter Drain
	Serious Accidental Spillages (Billion HGV km/ year)	0.36 0.43	0.29 0.83	0.31. 0.36		
ation	Serious Accidental Spillages (Billion HGV Rm/year) No junction Slip road Roundabout	0.36	0.29 0.83 3.09	0.31 0.36 5.35		Filter Drain Grassed Ditch / Swale
ocation	Serious Accidental Spillages (Billion HGV km/year) No junction Slip road Roundabout Cross road	0.36 0.43	0.29 0.83 3.09 0.88	0.31 0.36 5.35 1.46		Filter Drain Grassed Ditch / Swale Pond Wetland
Location	Serious Accidental Spillages (Billion HGV km/year) No junction Slip road Roundabout Cross road Side road	0.36 0.43 3.09	0.29 0.83 3.09 0.88 0.93	0.31 0.36 5.35 1.46 1.81		Filter Drain Grassed Ditch / Swale Pond Wetland Soakaway / Infiltration ba
Location	Serious Accidental Spillages (Billion HGV km/year) No junction Slip road Roundabout Cross road	0.36 0.43 3.09	0.29 0.83 3.09 0.88	0.31 0.36 5.35 1.46		Filter Drain Grassed Ditch / Swale Pond Wetland
Location	Serious Accidental Spillages (Billion HGV km/year) No junction Slip road Roundabout Cross road Side road	0.36 0.43 3.09	0.29 0.83 3.09 0.88 0.93	0.31 0.36 5.35 1.46 1.81		Filter Drain Grassed Ditch / Swale Pond Wetland Soakaway / Infiltration be Sediment Trap

The worksheet should be read in conjunction with DMRB 11.3.10.

Basin 3A HEWRAT

Basin 3A HEWRAT

	unoff to Watercourses	Highways England	Water Risk Assessment	Tool	Version 2.0.4 June 2019			to Groundwater			
	england		Soluble			Sediment - Chronic Impact	🚖 hig	hways			Reset GW As
			Zinc	Indi		Alert. Protected Area.			sment	_	
	Step 2	0.00	0.02	ugn						1	
	Step 3	0.00	0.01	ugil		Extensive? No - Deposition Index					Propert
	ssessment type	ent point (m)		ent (single outfall)	· · · · · · · · · · · · · · · · · · ·			1		10	Traffic flow
	S grid reference of outfall stru utfall number				List of outfalls in cumulative			2	SOURCE	10	Rainfall dep
	A receiving water Detailed R ate of assessment	iverNetwork ID						3		10	Drainage ar
								4		15	Infiltration n
	Step 1 Runoff Quality	AADT >= 100,000		Climatic regior	Narm Wet Rainfall site	Southampton (SAAR 820mm)		5		20	Unsaturate
	(Enter zero in Annual Q ₉₅							6		20	Flow type (I an effective
	river flow box to assess Step 1 runoff quality	Permeable area draining to			Bioavailable dissolved zinc $(\mu g/l)$			7	PATHWAY	5	Unsaturated
	For dissolved zinc only	Water hardness	Medium = 50-200 CaCO3/I		For dissolved copper only Ambient b			8		5	Organic Ca
	For sediment impact only			educes the velocity w	vithin 100m of the point of discharge?	No •					Unsaturated
		© Tier 2 Bed width (m)	17 Ma	nning's n 0.07 D Side s	slope (m/m) 0.5 Long slope (m/m) 0.0001		3		5	onsaturate
	Step 3 Mitigation				Treatment for Attenuation for soluble	s - Settlement of					
of to Waterian Batic B B With Table 0 for Waterian In the Table	Existing measures		Briefdescription		0 D No restriction						
Submit of preductor Database		TS Ba	ack To Top a	o To Inferface		Basin 3D HEW					
The decide at legard find of the second scale for the second	Summary of			Copper) en	gland			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Prediction of impact	Step1					DA LW				
$ \frac{\operatorname{Copy}}{\operatorname{Res}} = \frac{\operatorname{Copy}}{\operatorname{Cos}} \operatorname{Copy$		steps								(m)	
Are of exceedences We of exceedences 	In R				Zinc Cadmium Total PAH Pu	rene Fluoranthene Anthracene Phenanthrene				(
Ref exceducative ryme Image: Second construction ref Descend constru		ces/year 1	RST24	1	Toxicity Th	reshold 1 1 1 1	D5 Ju	nction type			inen)
$\frac{1}{10} \frac{1}{10} \frac$	No. of exceedances/we	orst year 134	143				D7 Tr	affic flow (AA		igency serv	ices)
Tarket Tread $\frac{87}{877}$ $\frac{1}{12}$ $\frac{1}{12}$ $\frac{1}{12}$ 	No. of exceedance	slyear 70.7	0 89.80						no/10° HGVkm/y	ear)	
Trachida RTTY 1 1 1 1 2 2 1 1 1 1 1 1 1 1 1 1 1 2 1 <th1< th=""> 1 1 <th1< td=""><td>No. of exceedances/we</td><td></td><td></td><td>(malka)</td><td>(malka) (malka) (valka) (v</td><td>alka) (ualka) (ualka)</td><td></td><td></td><td></td><td></td><td>-</td></th1<></th1<>	No. of exceedances/we			(malka)	(malka) (malka) (valka) (v	alka) (ualka) (ualka)					-
$\frac{1}{100} \frac{1}{100} \frac{1}$		resholds RST24 21	92 7ozie 184	ity 197	315 3.5 16770 3	875 2355 245 515	D11 Ri	sk of pollution i	incident		-
$\frac{1}{100} \frac{1}{100} \frac{1}$	Event Statistics	30%ile 111.4	5 539,93	1573	5762 3 28184 4	876 4679 299 1319				duction mea	sures
In River (no mitigation) Step 2 D16 Proposed measures factor Allowable Econdence/yer $\frac{8724}{100}$ $\frac{8724}{100}$ $\frac{8724}{100}$ No. 4 accordances/yer $\frac{100}{10}$ $\frac{100}{10}$ $\frac{100}{10}$ $\frac{100}{10}$ No. 4 accordances/yer $\frac{100}{10}$ $\frac{100}{10}$ $\frac{100}{10}$ $\frac{100}{10}$ $\frac{100}{10}$ No. 4 accordances/yer $\frac{100}{10}$				1875 2727	7101 3 56234 3 10215 5 112202 1	729 9335 596 2632 9411 18626 1189 5251	D14 Ex	isting measure	es factor	11, 11, 11,	1.111
Anomale Excentency or No. of excentency or 	In River (no mitig	ation) Seep 2	Stee	2						ion reduction	1
No. of accelerate/system No. of accecedate/system No. of acceceda			er Zinc				D17 Re	sidual with pro	oposed Pollution	reduction m	easures
No. of exceedences/proteinance 0 0 0 No. of exceedences/proteinance 0 0 0 No. of exceedences/proteinance 0 0 0 Allowable Exceedences/proteinance 0 0 0 No. of exceedences/proteinance 0 0 0 Solid 0 0 0 0 Solid 0 0 0 0 S	No. of exceedance	siyear O		Yelocity	0.14 m/s Tier 2 is use	d for the calculation	1472				
$\frac{1}{100 whole Exceedence/year Rescaled acceleration of the set of the s$	No. of exceedances	/summer 0	0		<u> </u>		Ju	stification for	choice of existing	ng measure	sfactors
No. of exceedance/very No.			DOTE		settlement						
$\frac{N_{0.0} et exceedances/vorst years}{N_{0.0} et exceedances/vorst years}}{\sum_{k=27}^{k} \frac{\sqrt{k} ek}{2} + \frac{1}{32} + \frac{1}$											
Annual versus concentration (up) $0.00 0.02$ Thresholds $ST2 100 0.02$ Thresholds $ST2 100 0.02$ No versus concentration (up) $0.00 0.02$ Thresholds $ST2 100 0.02$ Strike Note Strike Versus Stri	No. of exceedances/we No. of exceedances	orst year 0 Isummer 0	0								
Threshold Threshold Threshold Strik Strik Strik Strik 											
Thresholds R576 4.2 184 Event Statistics 0.010 0.02 0.08 0.02 0.08 0.00		(ugh									
90% ite 39% ite 39% ite 0.04 0.18 0.025 0.02 0.026 0	Th	resholds RST6 42									
Step 3 Step 3 <th< td=""><td>Event statistics</td><td>90%ile 0.04 95%ile 0.08</td><td>4 0.18 8 0.32</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>	Event statistics	90%ile 0.04 95%ile 0.08	4 0.18 8 0.32								
Serious Accidental Spillages (Billion HGV km/year) Motorways No. of exceedunces/year No. of exceedunces/worst year No. of exceed	In River (with mitig		5 1.04								
No. of exceedances/typesr 0.00 0.00 0.00 0.00 Motorways No. of exceedances/typesr 0 <t< td=""><td></td><td></td><td>er Zinc RST24</td><td></td><td></td><td></td><td></td><td>and the second sec</td><td>and the state of the</td><td>1</td><td>1</td></t<>			er Zinc RST24					and the second sec	and the state of the	1	1
No. of exceedances/worst year 0	No. of exceedance	slyear 0.00	1 0 0.00								s Ru
Allowable Exceedance/year 0.5 0.5 0.5 0.5 0.5 0.5 0.6 Cross road 0.6 <th< td=""><td>No. of exceedances</td><td>/summer 0</td><td></td><td>DI</td><td>-</td><td></td><td>Г</td><td>No junction</td><td></td><td>0.36</td><td>-</td></th<>	No. of exceedances	/summer 0		DI	-		Г	No junction		0.36	-
No. of exceedances/summer 0 0			RST6					Slip road	6	and the second second	
No. of exceedances/summer 0 0	No. of exceedance	styear 0.00	0.00					Cross road	Č.,	-	
	No. of exceedances/we	orst year 0	0					Side road Total		0.37	

Basin 3B HEWRAT Infiltration to Groundwater

	sment					
Component Number		Weighting Factor	Property or Parameter	Risk Score	Component score	Weighted component score
1		10	Traffic flow	>=100,000 AADT	3	30
2	SOURCE	10	Rainfall depth (annual averages)	>740 to <1060 mm rainfall	2	20
3		10	Drainage area ratio	<=50	1	10
4		15	Infiltration method	"Region", shallow infiltration systems (e.g. infiltration basin)	2	30
5		20	Unsaturated zone	Depth to water table <=5 m	3	60
6	PATHWAY	20	Flow type (Incorporates flow type an effective grain size)	Dominantly intergranular flow (e.g. non-fractured consolidated deposits or unconsolidated deposits of fine-medium sand or finer)	1	20
7	PAINWAT	5	Unsaturated Zone Clay Content	<=1% clay minerals	3	15
8		5	Organic Carbon	<=1% SOM	3	15
9		5	Unsaturated zone soil pH	pH <8 to >5	2	10
			1			
				TOTAL SCORE RISK SCREENING LEVEL		210 Medium

highways england	View Parame	ters Reset Spillage Risk		Go To I	nterface				
	A (main road)	1 1 1	В	C	D	E	F		
D1 Water body type	Surface watercour:	se		1 1 L	1				
2 Length of road draining to outfall (m)	2,600								
3 Road Type (A-road or Motorway)	A								
4 If A road, is site urban or rural?	Rural								
95 Junction type	Roundabout								
6 Location (response time for emergency services)	< 1 hour								
7 Traffic flow (AADT two way)	28,000								
08 % HGV	15	1							
8 Spillage factor (no/10° HGVkm/year)	3.09								
9 Risk of accidental spillage	0.01232	0.00000		0.00000	0.00000	0.00000	0.00000		
10 Probability factor	0.60								
11 Risk of pollution incident	0.00739	0.00000		0.00000	0.00000	0.00000	0.00000		Return
12 Is risk greater than 0.01?	No							Totals	Period
13 Return period without pollution reduction measures	0.00739	0.00000		0.00000	0.00000	0.00000	0.00000	0.0074	135
14 Existing measures factor	0.6			T CAN BE	12,24				
15 Return period with existing pollution reduction	0.00443	0.00000		0.00000	0.00000	0.00000	0.00000	0.0044	226
16 Proposed measures factor	0.4								1
17 Residual with proposed Pollution reduction measures	0.00177	0.00000		0.00000	0.00000	0.00000	0.00000	0.0018	564

 Spillage Factor

 Serious Accidental Spillages (Billion HGV km/year)
 Motorways
 Rural Trunk
 Urban Trunk

 No junction
 0.36
 0.29
 0.31

 Slip road
 0.43
 0.83
 0.36

 Roundabout
 3.09
 3.09
 5.35

 Cross road
 0.88
 1.46

 Side road
 0.93
 1.81

 Total
 0.37
 0.45
 0.85

The worksheet should be read in conjunction with DMRB 11.3.10.

Basin 3B HEWRAT

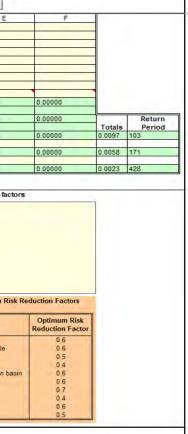
Basin 3B HEWRAT

During the second second	durates Francis	
	eduction Factors	
spinages	1	
System		
	Reduction Factor	
r Drain	0.6	
sed Ditch / Swale	0.6	
d	0.5	
land	0.4	
kaway / Infiltration basin	0.6	
	0.6	
	0.7	
stock / valve	0.4	
	0.6	
ched Weir	0.6	
	Spillages System It Drain seed Ditch / Swale d land kaway / Infiltration basin iment Trap ned Ditch	System Optimum Risk Reduction Factor It Drain 0.6 ssed Ditch / Swale 0.6 d 0.5 land 0.4 kaway / Infiltration basin 0.6 ment Trap 0.6 ned Ditch 0.7

Basin 3C HEWRAT Infiltration to Groundwater

highways england			Soluble	e				Sediment - Ch	ronic Impact	ے 🗧	highways england	
[EQS - Annual A	verage Conce	ntration			Acute Impact		Alert. Protect			undwater Ass	es
Step 2	Copper 0.00		Zinc 0.02	ugil .	Coj Pa		Ac	diment deposition for cumulating? No	r this site is judged a	m/s	Compone Number	
Step 3	0.00		0.01	ugil				tensive? No	- Deposition In	dex	1	+
Road number Assessment type			Maa amadatina aasa			rea / DBFO number				_		_
S grid reference of assess S grid reference of outfalls		E	Non-cumulative asse asting asting	ssment (single out	Tall)	Northing Northing					2	
Dutfall number Receiving watercourse			uounq			foutfalls in cumulative					3	
A receiving water Detailed Date of assessment	RiverNetwork ID					ssor and a filiation ion of assessment			I		4	
Notes					•						5	
Step 1 Runoff Quality	AADT	- 100,000		Climatic r	region Warm Wet	Rainfall site	South	ampton (SAAR 820mm)			6	
Step 2 River Impacts	Annual Q ₉₅ river	flow (m ³ /s)		2.6	Freshwate	r EQS limits:					7	
(Enter zero in Annual Q ₉₅ river flow box to assess	Impermeable road			7.107] Bioa	vailable dissolved copper (µg/l)		1 D			8	_
Step 1 runoff quality only)	Permeable area Base Flow Index		all (ha)	0.89		railable dissolved zinc (μg/l) rge in or within 1 km upstream o	f a protected sit	10.9 D	Yes 🗸			-
For dissolved zinc only	Water bardness		Medium = 50-200 CaCO3/	•					0	5	9	
						solved copper only Ambier	it background c					
For sediment impact on		tream structure, Estimated river v	, lake, pond or canal th width (m)	nat reduces the velo	city within 100m of t	e point of discharge?		No - D				
		Bed width (m)	width (m)	17	Manning's n <mark>0.07</mark>	D Sid	de slope (m/m)	0.5 Long sl	ope (m/m) 0.0001]		
Step 3 Mitigation												_
Step 5 milliguiton					Treatm	Estimated effective ent for Attenuation for solu	ibles - Se	ttlement of				
		E	Briefdescription		soluble			liments (%)				
Existing measures Proposed measures					0 50	No restriction No restriction	D 0					
5	redictions		op Co Cute Impact Zisc	Copper	Zinc Ca	<u>Sediment – Chro</u> Iniun Total PAH Pyrei		t athene Anthracene		EWRAT Spillag	highways	
ETAILED RESUL Summary of p ediction of impact 3 S S In Ru Allowable Exceedance	redictions S tep1 tep2 tep3 noff Step 1 slyear	ioluble – Ad Copper	cute Impact	Copper	Ziac Cao	Inium Total PAH Pyrci	e Fluoran bold	athene Anthracene	Phenanthrene	D1 D2 D3	highways england Water body ty Length of roa Road Type (A	d o
Allowable Exceedances No. of exceedances No. of exceedances No. of exceedances No. of exceedances No. of exceedances	redictions S tep 1 tep 2 tep 3 noff Step 1 slyear ty year slyear	Copper RST24 1 111.10 134 RST6 70.70 4	Cute Impact Zisc Zisc Zisc 1 115,70 143	Copper	Ziac Cad 1 124.90 6	Inium Total PAH Pyrce	e Fluoran hold 1 0 17.0	athene Anthracene Anthracene 1 20 14.80	Phenanthrene	D1 D2 D3 D4 D5 D6 D7 08	highways england Water body bj Length of roa Road Type (A If A road, is a Junction type Location (res Traffic flow () % HGV	d d -ro ite
Allowable Exceedances No. of exceedances	redictions \$	Copper RST24 1 111.10 134 RST6 1 70.70 4 31 /wall 42	Step Zinc Zinc Zinc 1 58,80 113 92 194	Copper 1 Copper 1 13.50 147 /ma/ka/ 197	Zisc Cad 1 124.30 6 152 /mg/kg/ /m 315	Inium Total PAH Pyrce Inium Total PAH Pyrce Toxicity Three 1 1 30 17.00 56.0 11 25 71 11 25 71	Act Fluorau act Fluorau bold 1 0 17.6 2! 2! 2? /wg/ 23: 23:	Athese Asthracese Athese Asthracese 1 100 14.80 5 22 1 100 14.80 5 22 1 24 5 245	Pbcssstbrese Pbcssstbrese 1 31.10 33 /wg/kg/ 515	D1 D2 D2 D3 D4 D5 D6 D6 D6 D7 D8 D8 D8 D9 D10 D110 D111 D12	highways england Water body ty Length of roa Road Type (A If A road, is s Junction type Location (res Traffic flow. (Spillage factor Risk of accidd Probability fac (Risk of polluti (Is risk greater	d d -ro ite por AA r (/ entricitor
Allowable Exceedances No. of exc	redictions \$	Copper Copper 1 111.10 111.10 134 RST6 1 134 1 134 1 134 1 134 1 134 1 134 1 134 1 134 1 134 1 134 1 134 1 134 1 134 1 134 1 1 1 1 1 1 1 1 1 1 1 1 1	Step Zisc Step Zisc 1 1 1 83.80 13 115.70 143 7 7 184 22 184 7 22 184 333.33 786.65 333.53 133	Copper 1 Copper 1 13.50 147 147 166 1573 1615 1615 1615 1615	Ziac Cau 1 124.30 6 152	Inium Total PAH Pyrei Inium Total PAH Pyrei Toxicity Three 1 1 30 17.00 56.0 11 25 71 125 71	Act Fluoran act Fluoran act Fluoran act Fluoran bold 11 act Fluoran bold 17.5 bold 25' c 16 b 46:3 b 46:3 b 36:33	kthese Asthracese sthese Asthracese 1 1 1 1 1 1 1 1 1 1 1 1 1	Phenosthrese Phenosthrese 1 31.10 33	D1 D2 D3 D4 D5 D6 D7 D7 D8 D9 D10 D11 D11 D11 D11 D11 D11 D11 D11 D11	highways england Water body ty Length of roa Road Type (4 If A road, is s Junction type Location (res Traffic flow (% HGV Spillage facto Risk of accidd Probability fac Risk of polluti	d d -ro ite por AA r (/ enti ctor on th w w w w w w w w w
Allowable Exceedances No. of exceedances No. of exceedances No. of exceedances No. of exceedances No. of exceedances No. of exceedances/wor Allowable Exceedances/wor Chilowable Exceedances/wor No. of exceedances/wor Exceedances/wor No. of exceedances/wor No. of exceedances/wor No. of exceedances/wor Allowable Exceedances/wor No. of exceedance	redictions \$ feef	Copper RST24 1 1 134 RST6 1 70,70 4 31 /wg/l/ 21 42 57.52 11.45 1 44.76 233,71 1	Step Zisc Zisc Zisc Zisc 1 39,80 113 102 102 254,56 533,33 36,85	Copper 1 Copper 1 13.50 147 147 166 1573 1615 1615 1615 1615	Zisc Cad 1 124.90 6 152 /modla/ /m 315 2676 5762 7101	Inium Total PAH Pyrei Inium Total PAH Pyrei Toxicity Threat 1 1 Toxicity Threat 30 17,00 56.0 11 25 71 12 1065 1314 3 26184 4674 3 26234 4374	Act Fluoran act Fluoran act Fluoran act Fluoran bold 11 act Fluoran bold 17.5 bold 25' c 16 b 46:3 b 46:3 b 36:33	Athene Anthracene Athene Anthracene 100 14.80 5 22 100 14.80 5 22 100 100 100 100 100 100 100 1	Pbcsastbreac Pbcsastbreac 1 31.10 33 //s//lg/ 515 516 1313 2652	D1 D2 D3 D4 D5 D6 D7 D7 D8 D9 D10 D11 D11 D11 D11 D11 D11 D11 D11 D11	highways england Water body b Length of roa Road Type (A If A road, is s Junction type Location (res Traffic flow (% HGV Spillage facto Risk of accidd Probability far Return period Existing meas Return period Propaged mei	d d -ro ite por AA r (// enta ton on i th wi ure wi asu pr
Allowable Exceedances No. of exceedances	redictions \$ fep1 fep2 fep3 noff Step 1 slyear slyear slyear slyear slyear slyear slyear slyear fgear slyear fgear fgear slyear	Copper RST24 1 1 1 1 1 1 1 1 1 1 1 1 1	Cute Impact Zisc Zisc Zisc 1 115.70 143 7 2 2 32 7 5 5 33 3 5 3 3 3 2 5 3 3 3 5 3 3 3 5 3 3 3 5 3 3 5 3 5	Copper 1 Copper 1 13.50 147 147 166 1573 1615 1615 1615 1615	Zisc Cad 1 124.90 6 152 /modla/ /m 315 2676 5762 7101	Inium Total PAH Pyrei Inium Total PAH Pyrei Toxicity Threat 1 1 Toxicity Threat 30 17,00 56.0 11 25 71 12 1065 1314 3 26184 4674 3 26234 4374	Att Fluoran att 231 att 3 att 1865	Athene Anthracene Athene Anthracene 100 14.80 5 22 100 14.80 100 14.	Pbcsastbreac Pbcsastbreac 1 31.10 33 //s//lg/ 515 516 1313 2652	D1 D2 D3 D4 D5 D6 D7 D7 D8 D9 D10 D11 D11 D11 D11 D11 D11 D11 D11 D11	highways england Water body ty Length of roa Raad Type (A If A road, is s Junction type Location free Traffic flow (% HGV Spillage facto Risk of accidd Probability fac Return period Return period Return period Proposed mei 7 Residual with	d c -rc ite pol A A m th w w w w w
TAILED RESUL Summary of p ediction of impact 3 5 5 7 10 Ru Allowable Exceedances No. of exceedances/wor Allowable Exceedances/wor Allowable Exceedances/ No. of exceedances/ No. of exceedances/ In River (no mitigat Allowable Exceedances/ No. of exceedances/	redictions \$ fop 1 fop 2 fop 3 noff Step 1 slycar rt year slycar	Copper RST24 1 134 134 134 134 134 134 134	Cute Impact Zisc Zisc Zisc 1 15,70 113 104 104 104 104 104 104 7 ozici 250,55 104 250,55 105 250,55 106,65 1030,55 2 isc 1 0 0 0	Copper 1 113.50 147 147 147 147 157 157 157 2727 2 Yelocity	Zinc Cau 1 124.30 6 152 /mg/kg/ /m 315 26176 5762 701 10215 0.14 m/s	Initian Total PAH Pyrcin Initian Total PAH Pyrcin 1 1 Toxicity Threat 30 17,00 56.0 11 25 71 12 10 617 130 17,00 56.0 11 25 71 11 25 11 13 106170 815 1 11065 1314 3 26364 4874 3 5234 3134 5 112202 1341	Att Fluoran att 231 att 3 att 1865	Athene Anthracene Athene Anthracene 100 14.80 5 22 100 14.80 100 14.	Pbcsastbreac Pbcsastbreac 1 31.10 33 //s//lg/ 515 516 1313 2652	D1 D2 D3 D4 D5 D6 D7 D7 D8 D9 D10 D11 D11 D11 D11 D11 D11 D11 D11 D11	highways england Water body ty Length of roa Raad Type (A If A road, is s Junction type Location free Traffic flow (% HGV Spillage facto Risk of accidd Probability fac Return period Return period Return period Proposed mei 7 Residual with	d c -rc ite pol A A m th w w w w w
Allowable Exceedances No. of exceedances/word	redictions \$ tep1 tep2 tep3 noff Step 1 slyear sly	Copper RST24 1 1 134 RST6 1 134 134 RST6 1 134 134 134 134 134 134 134	Cute Impact Zisc Zisc Zisc Zisc 1 15.70 143 7 oxici 284.56 353.33 196.65 353.33 7 oxici 284.55 353.33 7 oxici 284.55 353.33 355 2 2 10 0 0 0	Copper 1 1 1350 147 147 147 147 147 147 147 147	Zinc Cau 1 124.30 6 152 /mg/kg/ /m 315 26176 5762 701 10215 0.14 m/s	Initian Total PAH Pyrcin Initian Total PAH Pyrcin 1 1 Toxicity Threat 30 17,00 56.0 11 25 71 12 10 617 130 17,00 56.0 11 25 71 11 25 11 13 106170 815 1 11065 1314 3 26364 4874 3 5234 3134 5 112202 1341	Att Fluoran att 231 att 3 att 1865	Athene Anthracene Athene Anthracene 100 14.80 5 22 100 14.80 100 14.	Pbcsastbreac Pbcsastbreac 1 31.10 33 //s//lg/ 515 516 1313 2652	D1 D2 D3 D4 D5 D6 D7 D7 D8 D9 D10 D11 D11 D11 D11 D11 D11 D11 D11 D11	highways england Water body ty Length of roa Raad Type (A If A road, is s Junction type Location free Traffic flow (% HGV Spillage facto Risk of accidd Probability fac Return period Return period Return period Proposed mei 7 Residual with	d c -rc ite pol A A m th w w w w w
TAILED RESUL Summary of p ediction of impact 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	redictions \$ tep1 tep2 tep3 noff \$tep1 tep3 noff \$tep1 tep3 tep3 tep3 tep3 tep3 tep3 tep3 tep3	Copper RST24 1 1 134 RST6 1 134 134 134 134 134 134 134	Cute Impact Zisc Zisc Zisc 1 15.70 143 7 22 7 2 2 2 32 7 2 2 32 7 2 2 32 7 2 2 32 7 2 2 33 35 3 35	Copper 1 1 1350 147 147 147 147 147 147 147 147	Zinc Cau 1 124.30 6 152 /mg/kg/ /m 315 26176 5762 701 10215 0.14 m/s	Initian Total PAH Pyrcin Initian Total PAH Pyrcin 1 1 Toxicity Threat 30 17,00 56.0 11 25 71 12 10 617 130 17,00 56.0 11 25 71 11 25 11 13 106170 815 1 11065 1314 3 26364 4874 3 5234 3134 5 112202 1341	Att Fluoran att 231 att 3 att 1865	Athene Anthracene Athene Anthracene 100 14.80 5 22 100 14.80 100 14.	Pbcsastbreac Pbcsastbreac 1 31.10 33 //s//lg/ 515 516 1313 2652	D1 D2 D3 D4 D5 D6 D7 D7 D8 D9 D10 D11 D11 D11 D11 D11 D11 D11 D11 D11	highways england Water body ty Length of roa Road Type (A If A road, is s Junction type Location (res Traffic flow (% HGV Spillage factor Probability fac Risk of accidd Probability fac Risk of accidd Probability fac Return period Proposed me. Return period Proposed me. Return period Proposed me.	d c -rc ite polA A C () ant th www. www. asu pr
TAILED RESUL Summary of p ediction of impact 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	redictions \$ fep1 fep2 fep3 noff Step 1 slyear sly	Copper RST24 1 134 134 134 134 134 134 134	Cute Impact Zisc Zisc 1 1 15,70 143 7 183 184 264,56 736,85 1333,53 Zisc 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Copper 1 1 1350 147 147 147 147 147 147 147 147	Zinc Cau 1 124.30 6 152 /mg/kg/ /m 315 26176 5762 701 10215 0.14 m/s	Initian Total PAH Pyrcin Initian Total PAH Pyrcin 1 1 Toxicity Threat 30 17,00 56.0 11 25 71 12 10 617 130 17,00 56.0 11 25 71 11 25 11 13 106170 815 1 11065 1314 3 26364 4874 3 5234 3134 5 112202 1341	Att Fluoran att 231 att 3 att 1865	Athene Anthracene Athene Anthracene 100 14.80 5 22 100 14.80 100 14.	Pbcsastbreac Pbcsastbreac 1 31.10 33 //sg/fig/ 5.15 5.15 5.16 1.313 2.652	D1 D2 D3 D4 D5 D6 D7 D7 D8 D9 D10 D11 D11 D11 D11 D11 D11 D11 D11 D11	highways england Water body b Length of roa Road Type (A If A road, is s Junction type Location (res Traffic flow (% HGV Probability fat Risk of polluti Risk of accidd Probability fat Risk of accidd Probability fat Risk of accidd Existing meas Return period Existing meas Return period Existing meas Return period Serious Justification f Spillage Serious (Bill No junct	Achieve Content of the second
TAILED RESUL Summary of p ediction of impact 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	redictions \$ fep1 fep2 fep3 noff \$ step 1 styear styear styear styear styear styear styear fgear styear styear fgear styear fgear f	Copper RST24 1 1 134 RST26 1 134 134 RST6 1 134 134 134 134 134 134 134	Cute Impact Zisc Zisc Zisc 1 15.70 143 184 26456 339.50 339.50 275628 Zisc 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Copper 1 1 1350 147 147 147 147 147 147 147 147	Zinc Cau 1 124.30 6 152 /mg/kg/ /m 315 26176 5762 701 10215 0.14 m/s	Initian Total PAH Pyrcin Initian Total PAH Pyrcin 1 1 Toxicity Threat 30 17,00 56.0 11 25 71 12 10 617 130 17,00 56.0 11 25 71 11 25 11 13 106170 815 1 11065 1314 3 26364 4874 3 5234 3134 5 112202 1341	Att Fluoran att 231 att 3 att 1865	Athene Anthracene Athene Anthracene 100 14.80 5 22 100 14.80 100 14.	Pbcsastbreac Pbcsastbreac 1 31.10 33 //sg/fig/ 5.15 5.15 5.16 1.313 2.652	D1 D2 D3 D4 D5 D6 D7 D7 D8 D9 D10 D11 D11 D11 D11 D11 D11 D11 D11 D11	highways england Water body ty Length of roa Road Type (A If A road, is y Location (res Traffic flow (% HGV Spillage facto Probability far Risk of polluti Risk of polluti Spillage facto Probability far Risk of polluti Risk of polluti Spillage facto Probability far Resum period Probability far Resum period Probability far Resum period Probability far Resum period Spillage Serious Cross to Side roa Side roa Side roa Side roa	the second
TAILED RESUL Summary of p ediction of impact 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	redictions \$ cop1 cop2 cop3 noff Step 1 slycar sly	Copper RST24 1 1 1 1 1 1 1 1 1	Cute Impact Zisc Zisc Zisc 1 115.70 143 7 2 2 32 7 5 5 333.53 7 36.85 1333.53 7 36.85 1333.53 7 36.85 1333.53 7 36.85 1333.53 7 36.85 1333.53 7 3 5 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Copper 1 1 1350 147 147 147 147 147 147 147 147	Zinc Cau 1 124.30 6 152 /mg/kg/ /m 315 26176 5762 701 10215 0.14 m/s	Initian Total PAH Pyrcin Initian Total PAH Pyrcin 1 1 Toxicity Threat 30 17,00 56.0 11 25 71 12 10 617 130 17,00 56.0 11 25 71 11 25 11 13 106170 815 1 11065 1314 3 26364 4874 3 5234 3134 5 112202 1341	Att Fluoran att 231 att 3 att 1865	Athene Anthracene Athene Anthracene 100 14.80 5 22 100 14.80 100 14.	Pbcsastbreac Pbcsastbreac 1 31.10 33 //sg/fig/ 5.15 5.15 5.16 1.313 2.652	D1 D2 D3 D4 D5 D6 D7 D7 D8 D9 D10 D11 D11 D11 D11 D11 D11 D11 D11 D11	highways england Water body by Length of roa Road Type (A If A road, is s Junction type Location (res Traffic flow (% HGV Spillage facto Risk of accide Probability fac I Risk of polluti Spillage facto Probability fac Return period Proposed mei Return period Proposed mei Return period Proposed mei Return period Proposed mei Return period Serious (Built Supposed mei Serious (Built Spillage Serious (Built No junct Stip roac Stip roac (Cons to Stip roac	E F Accon

Reset GW Assessment Go To Interface ment Weighting Factor Property or Parameter Risk Score >=100,000 AADT 10 Traffic flow >740 to <1060 mm rainfall SOURCE 10 Rainfall depth (annual averages) <=50 10 Drainage area ratio 15 Infiltration method "Region", shallow infiltration systems (e.g. infiltration basin) 20 Unsaturated zone Depth to water table <=5 m Flow type (Incorporates flow type an effective grain size) Dominantly intergranular flow (e.g. non-fractured consolidated dep unconsolidated deposits of fine-medium sand or finer) 20 PATHWAY Unsaturated Zone Clay Content <=1% clay minerals 5 5 Organic Carbon <=1% SOM 5 Unsaturated zone soil pH pH <8 to >5 TOTAL SCORE RISK SCREENING LEVEL


3	highways england	View Param	eters	Reset Spillage Risk	Go To Ir	nterface
		A (main road)	В	С	D	E
D1	Water body type	Surface watercour	se	and the second second	1	
D2	Length of road draining to outfall (m)	3,250				
D3	Road Type (A-road or Motorway)	A	1			
D4	If A road, is site urban or rural?	Rural		*		
D5	Junction type	Roundabout				
D6	Location (response time for emergency services)	< 1 hour				
D7	Traffic flow (AADT two way)	149.961	f 1	Te	. 1	
D8	% HGV	11		-	1.	
D8	Spillage factor (no/10° HGVkm/year)	0.83				
	Risk of accidental spillage	0.01624	0.00000	0.00000	0.00000	0.00000
D10	Probability factor	0.60				1.5.1.0.1.0
D11	Risk of pollution incident	0.00974	0.00000	0.00000	0.00000	0.00000
D12	Is risk greater than 0.01?	No				
D13	Return period without pollution reduction measures	0.00974	0.00000	0.00000	0.00000	0.00000
	Existing measures factor	0.6	L MARKED			
	Return period with existing pollution reduction	0.00585	0.00000	0.00000	0.00000	0.00000
	Proposed measures factor	0.4	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		1	
	Residual with proposed Pollution reduction measures	0.00234	0.00000	0.00000	0.00000	0.00000

usti	fication for choice of existin	g measures fac	tors		Justification for che	pice of proposed measures fact
						Indicative Pollution Ris
	Spillage Factor Serious Accidental Spillages (Billion HGV km/ year)	Motorways	Rural Trunk	Urban Trunk		for Spillages System
Location	No junction Slip road Roundabout Cross road Side road Total	0.36 0.43 3.09 0.37	0.29 0.83 3.09 0.88 0.93 0.45	0.31 0.36 5.35 1.46 1.81 0.85		Filter Drain Grassed Ditch / Swale Pond Wetland Soakaway / Infiltration ba Sediment Trap Unlined Ditch
				1		Penstock / valve Notched Weir Oil Separator

Basin 3C HEWRAT

	Component score	Weighted component score
	3	30
	2	20
	1	10
	2	30
	3	60
eposits or	1	20
	3	15
	3	15
	2	10
		210
		Medium

Basin 3C HEWRAT

england	Highways Engla	and Water Risk Asses	ssment I ool	Ve	rsion 2.0.4 Ju	ne 2019			
		So	luble					Sediment -	Chronic Impact
	EQS - Annual Average				Acute	Impact			
	Copper 0.00	Zinc 0.01						Alert. Pro	tected Area.
Step 2	0.00	0.01	ug/l		opper	Zinc	Se	diment deposition	for this site is judge
					Pass	Pass		coumulating? No	0.14 Low flow 1
Step 3	0.00	0.01	ugłi					tensive? No	- Depositio
Road number				The	Area / DBF	0 number			
Assessment type		Non-cumulative a	assessment (single out	fall)					
OS grid reference of assessme	nt point (m)	Easting				Northing			
DS grid reference of outfall stru	cture (m)	Easting				Northing			
Outfall number				Li	st of out fails in	n cumulative			
Receiving watercourse				as	sessment				
A receiving water Detailed Ri	verNetwork ID			As	ssessor and a	filiation			
) ate of assessment				Ve	ersion of asse	ssment			
Step 1 Runoff Quality Step 2 River Impacts (Enter zero in Annual Q ₈₅ river flow box to assess Step 1 runoff quality	AADT >=100,000 Annual Q ₅₅ river flow (n Impermeable road area Permeable area drainin	n ³ /5) a drained (ha)	 Climatic 2.6 4.389 0.128] Freshwa	ater EQS limit oavailable dis		Sout	thampton (SAAR 820mm)
only)	Base Flow Index (BFI)	ig to outlan (na)	0.89			ithin 1 km upstream of	a protected s		Yes 🔻
For dissolved zinc only	Water hardness	Medium = 50-200 Ca0	203/	For	dissolved co	pper only Ambien	t background	concentration (µg/I)	0
For sediment impact only		structure, lake, pond or can ted river width (m) dth (m)	nal that reduces the velo 5 17	city within 100m c]] Manning's n <mark>0</mark>		-	e slope (m/m)	No - D	ig slope (m/m) 0.0001
Step 3 Mitigation		Briefdescription			tment for bles (%)	Estimated effectiver Attenuation for solu restricted discharge ra	oles - S	ettlement of diments (%)	

Component Number		Weighting Factor	Property or Parameter	Risk Score	Component score	Weighted componen score
1		10	Traffic flow	>=100,000 AADT	3	30
2	SOURCE	10	Rainfall depth (annual averages)	>740 to <1060 mm rainfall	2	20
3		10	Drainage area ratio	>50 to <150	2	20
4		15	Infiltration method	"Region", shallow infiltration systems (e.g. infiltration basin)	2	30
5		20	Unsaturated zone	Depth to water table <15 m to >5 m	2	40
6	PATHWAY	20	Flow type (Incorporates flow type an effective grain size)	Flow dominated by fractures/ fissures (e.g. well consolidated sedimentary deposits, igneous and metamorphic rocks or unconsolidated deposits of very coarse sand and coarser)	3	60
7	FAILWAI	5	Unsaturated Zone Clay Content	<=1% clay minerals	3	15
8		5	Organic Carbon	<=1% SOM	3	15
9		5	Unsaturated zone soil pH	pH <8 to >5	2	10
				TOTAL SCORE		240

Runoff to Watercourses

DETAILED RESULTS		Back To Top		o To Interface							
Summary of predi	ctione	Soluble - Acute					Sediment	- Chronie	Impact		
Summary of preur	cuons	Copper Zinc		Copper	Zinc	Cadmium	Total PAH	Pyrene	Fluoranthene	Anthracene	Phenanthre
Prediction of impact Step1 Step2											
Step S											
In Draw off											
In Runoff	Step 1	Copper Zinc		p / Copper	Zisc	Cadmium	Total PAH	Pyrene	Fluoranthene	Anthracene	Phenanthre
Allowable Exceedances/year		RST24	_		1 1	1 1		icity Threshold	1 1	1	1
No. of exceedances/year		111.10 115.70	D	113.50	124.90	6.30	17.00	56.00	17.00	14.80	31.10
No. of exceedances/worst year		134 143		147	152	11	25	71	25	22	39
Allowable Exceedances/year		RST6	_								
No. of exceedances/year No. of exceedances/worst year		70.70 89.8 91 113	D								
no. or exceedences norse year				/ # - >	/ M - V	/ M - >	A M - S	6 M - S	A M - X	4 M - S	A M - S
Thresholds		/ug/l) /ug/l) 21 32	Tozie	ity <u>(ma/ka)</u> 197	/mg/kg) 315	/mg/kg) 3.5	/vg/kg) 16770	/ug/kg) 875	/ug/kg) 2355	/ug/kg) 245	/vg/kg) 515
Thresholds Event Statistics Mean		42 184 57.52 264.5		766	2676		11065	1914	1837	117	518
30%ile		111.45 539.9	3	1573	5762	3	28184	4876	4679	299	1319
95%ile 33%ile		144.76 796.8 239.71 1393.5		1875 2727	7101	3	56234	9729 19411	9335 18626	596 1189	2632 5251
In River (no mitigation)	Step 2		Step	2							
		Copper Zinc BST24									
Allowable Exceedances/year		1 1				. .					
No. of exceedances/year No. of exceedances/worst year		0 0 0 0		Yelocity	0.14	mis	Tier 2	is used for th	e calculation		
No. of exceedances/summer No. of exceedances/worst summer				DI	-						
				Minimum 2 needed	settlement],				
Allowable Exceedances/year		RST6		Leedeed			.				
No. of exceedances/year		0.5 0.5 0 0									
No. of exceedances/worst year No. of exceedances/summer			_								
No. of exceedances/worst summer		0 0									
Annual average concentration (ug/l)		0.00 0.01									
Thresholds	R\$7.24	/ug/l) /ug/l)	<u>`</u>								
Thresholds		42 184									
Event Statistics Mean 30%ile		0.01 0.05 0.03 0.13									
95%ile		0.06 0.23									
39%ile		0.18 0.75									
In River (with mitigation)	Step 5										
		Copper Zinc									
Allowable Exceedances/year		RST24	_								
No. of exceedances/year No. of exceedances/worst year		0.00 0.00									
No. of exceedances/summer		0 0		DI	-						
No. of exceedances/worst summer		0 0									
Allowable Exceedances/year		RST6									
No. of exceedances/year		0.00 0.00									
No. of exceedances/worst year No. of exceedances/summer		0 0									

Basin 4 HEWRAT Spillage Risks

engla	hways and		View P	arameter	rs	Reset Spillage Risk	Go To Ir	nterface			
			A (main n	(bao	В	C	D	E	F	1	
Nate	er body type		Surface wat					-		-	
	gth of road draining to outfall ((m)	1.600	ercourse	-					-	
	d Type (A-road or Motorway)	ing .	M								
	road, is site urban or rural?		Rural							-	
	ction type		Roundabout	+						-	
	ation (response time for emerg	nency services)	< 1 hour							-	
	fic flow (AADT two way)	gandy dormodd)	149,961								
	GV		10		-				-	-	
	age factor (no/10° HGVkm/ye	eri	0.43								
	of accidental spillage		0.00377	0	.00000	0.00000	0.00000	0.00000	0.00000		
	ability factor		0.60			0.00000	0.00000	0.00000	0.00000		
	of pollution incident		0.00226	0	.00000	0.00000	0.00000	0.00000	0.00000		Return
	sk greater than 0.01?		No	0.		0.0000	0.00000	0.0000	0.00000	Totals	Period
	in period without pollution red	duction measures	0.00226	0	.00000	0.00000	0.00000	0.00000	0.00000	0.0023	443
	ting measures factor	aucuon medadica	0.6	U.		0.0000	0.00000	0.0000	0.00000	0.0023	115
	in period with existing pollution	on reduction	0.00136	0	.00000	0.00000	0.00000	0.00000	0.00000	0.0014	738
	osed measures factor	on reduction	0.4	0.		0.0000	0.00000	0.0000	0.00000	0.0014	130
	idual with proposed Pollution r	aduction measure		10			0.00000	0.00000	0.00000	0.0005	1844
usti	fication for choice of existin	g measures facto	rs F F F	Reduction he factor Provide ju he appro	n Factor ta r. ustification opriate con	ollution Risk ble below to estimate I for the decision in Inments box below.	hoice of propose	ed measures factors			
ustif	fication for choice of existin	g measures facto	rs Ft	Reduction the factor Provide ju the appro	n Factor ta r. ustification priate con value of 1	ble below to estimate	hoice of propos	ed measures factors			
usti		g measures facto	rs Ft	Reduction he factor Provide ju he appro A default measures	n Factor ta r. ustification priate con value of 1	ble below to estimate i for the decision in nments box below, is used if no		ive Pollution Risk Re	-		
ustif	Spillage Factor		rs Ft	Reduction he factor Provide ju he appro A default measures entered.	n Factor ta r. ustification opriate con value of 1 s are consid	ble below to estimate i for the decision in nments box below, is used if no	Indicat	iive Pollution Risk Re	duction Factors Optimum Risk Reduction Factor		
ustif	Spillage Factor Serious Accidental Spillages (Billion HGV km/ year)	Motorways	Rural Trunk	Reduction he factor Provide ju he appro A default measures entered, Urba	n Factor ta r. ustification opriate con value of 1 s are consid	ble below to estimate i for the decision in nments box below, is used if no	Indicat	tive Pollution Risk Re Nages System	Optimum Risk		
ustif	Spillage Factor Serious Accidental Spillages (Billion HSV km/ year) No junction	Motorways 0.36	Rural Trunk 0.29	Reduction he factor Provide ju he appro A default measures entered.	n Factor ta r. ustification opriate con value of 1 s are consid an Trunk 0.31	ble below to estimate i for the decision in nments box below, is used if no	Indicat for Spi Filter D Grasse	tive Pollution Risk Re Nages System	Optimum Risk Reduction Factor 0.6 0.6		
	Spillage Factor Serious Accidental Spillages (Billion HGV km/ year) No junction Silp road	Motorways 0.36 0.43	Rural Trunk 0.29 0.83	Reduction he factor Provide ju he appro A default measures entered, Urbe	n Factor ta r. ustification opriate con value of 1 s are consid an Trunk 0.31 0.36	ble below to estimate i for the decision in nments box below, is used if no	Indicat for Spi	tive Pollution Risk Re Ilages System rain	Optimum Risk Reduction Factor 0.6		
	Spillage Factor Serious Accidental Spillages (Billion HGV km/ year) No junction Slip road Roundabout	Motorways 0.36	Rural Trunk 0.29 0.83 3.09	Reduction he factor Provide ju he appro A default measures entered.	n Factor ta r. ustification opriate con value of 1 s are consid an Trunk 0.31 0.36 5.35	ble below to estimate i for the decision in nments box below, is used if no	Indicat for Spi Filter D Grasse	ive Pollution Risk Re Nages System rain d Ditch / Swale	Optimum Risk Reduction Factor 0.6 0.5 0.4		
	Spillage Factor Serious Accidental Spillages (Billion HGV km/ year) No junction Slip road Roundabout. Cross road	Motorways 0.36 0.43	Rural Trunk 0.29 0.83 3.09 0.88	Reduction he factor Provide ju he appro A default measures entered, Urbe	an Trunk 0.31 0.36 5.35 1.46	ble below to estimate i for the decision in nments box below, is used if no	Filter D Grasse Pond Wetlan	ive Pollution Risk Re Nages System rain d Ditch / Swale	Optimum Risk Reduction Factor 0.6 0.6 0.5		
	Spillage Factor Serious Accidental Spillages (Billion HGV km/ year) No junction Slip road Roundabout Cross road Side road	Motorways 0.36 0.43 3.09	Rural Trunk 0.29 0.83 3.09 0.88 0.93	Reduction he factor Provide ju he appro A default neasures entered.	an Trunk 0.31 0.36 5.35 1.46 1.81	ble below to estimate i for the decision in nments box below, is used if no	Filter D Grasse Pond Wetlan Soakay	tive Pollution Risk Re Ilages System rain d Ditch / Swale d	Optimum Risk Reduction Factor 0.6 0.5 0.4		
	Spillage Factor Serious Accidental Spillages (Billion HGV km/ year) No junction Slip road Roundabout. Cross road	Motorways 0.36 0.43	Rural Trunk 0.29 0.83 3.09 0.88	Reduction he factor Provide ju he appro A default neasures entered.	an Trunk 0.31 0.36 5.35 1.46	ble below to estimate i for the decision in nments box below, is used if no	Filter D Grasse Pond Wetlan Soakay	ive Pollution Risk Re Nages System rain d Ditch / Swale d way / Infiltration basin nt Trap	Optimum Risk Reduction Factor 0.6 0.6 0.5 0.4 0.6		
Location	Spillage Factor Serious Accidental Spillages (Billion HGV km/ year) No junction Slip road Roundabout Cross road Side road	Motorways 0.36 0.43 3.09	Rural Trunk 0.29 0.83 3.09 0.88 0.93	Reduction he factor Provide ju he appro A default neasures entered.	an Trunk 0.31 0.36 5.35 1.46 1.81	ble below to estimate i for the decision in nments box below, is used if no	Filter D Grasse Pond Wetlan Soakaw Unlined	ive Pollution Risk Re Nages System rain d Ditch / Swale d way / Infiltration basin nt Trap	Optimum Risk Reduction Factor 0.6 0.5 0.5 0.4 0.6 0.6		
	Spillage Factor Serious Accidental Spillages (Billion HGV km/ year) No junction Slip road Roundabout Cross road Side road	Motorways 0.36 0.43 3.09	Rural Trunk 0.29 0.83 3.09 0.88 0.93	Reduction he factor Provide ju he appro A default neasures entered.	an Trunk 0.31 0.36 5.35 1.46 1.81	ble below to estimate i for the decision in nments box below, is used if no	Filter D Grasse Pond Wetlan Soakaw Unlined	tive Pollution Risk Re Nages System d Ditch / Swale d vay / Infiltration basin nt Trap I Ditch ck / valve	Optimum Risk Reduction Factor 0.6 0.6 0.5 0.4 0.6 0.6 0.7		

The worksheet should be read in conjunction with DMRB 11.3.10.

Basin 4 HEWRAT Infiltration to Groundwater

Basin 4 HEWRAT

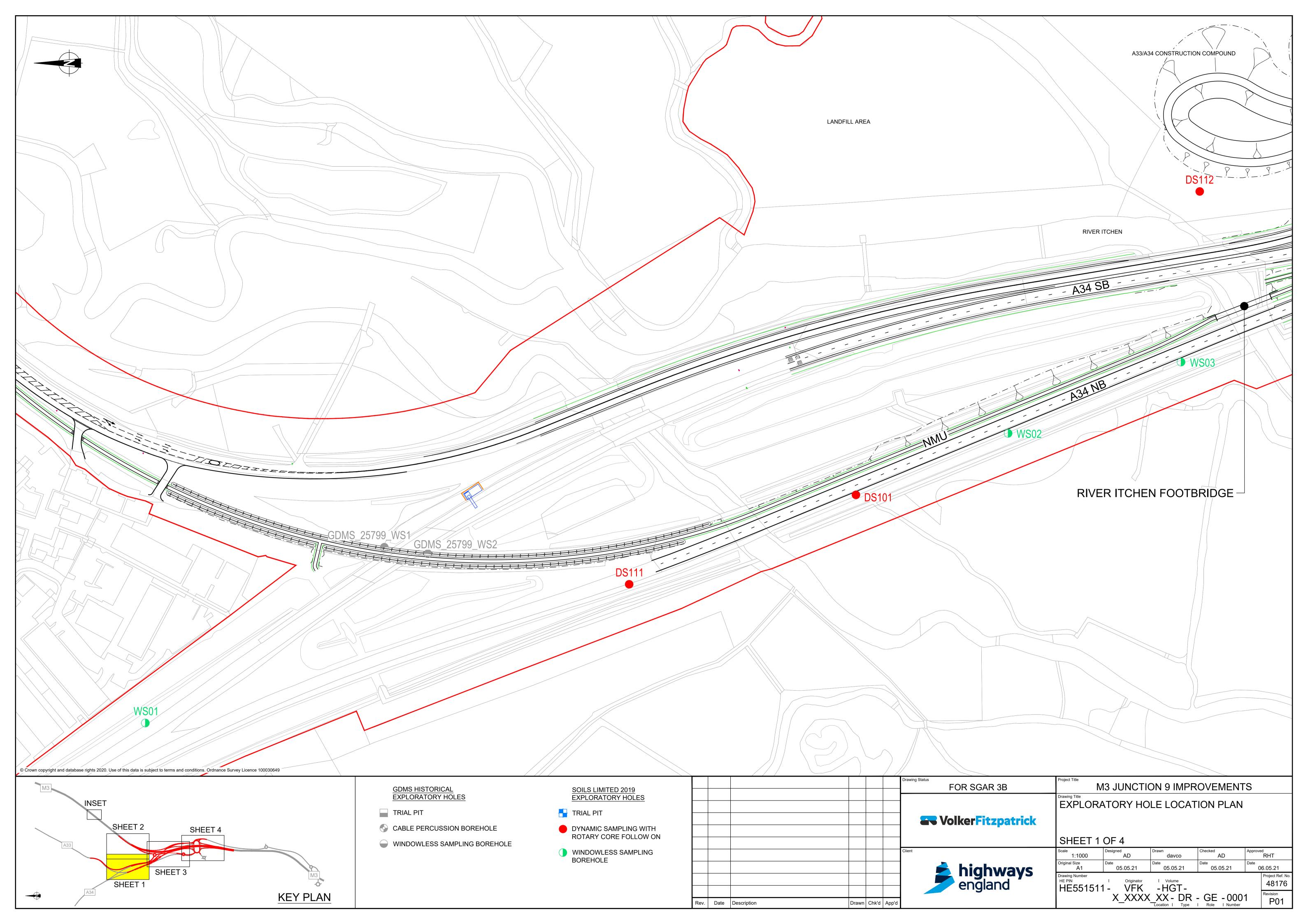
Infiltration to Groundwater

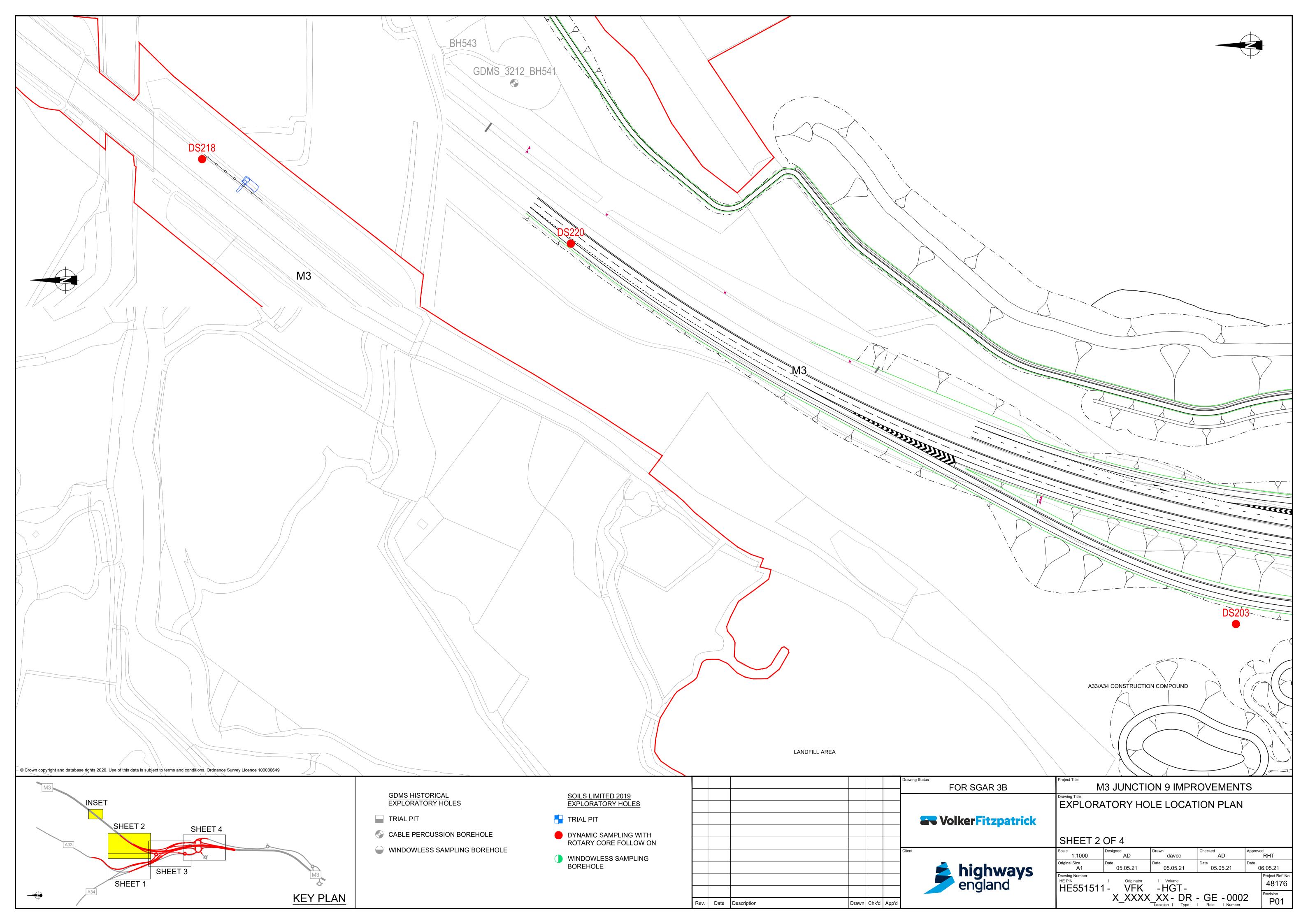
	highways
-	england

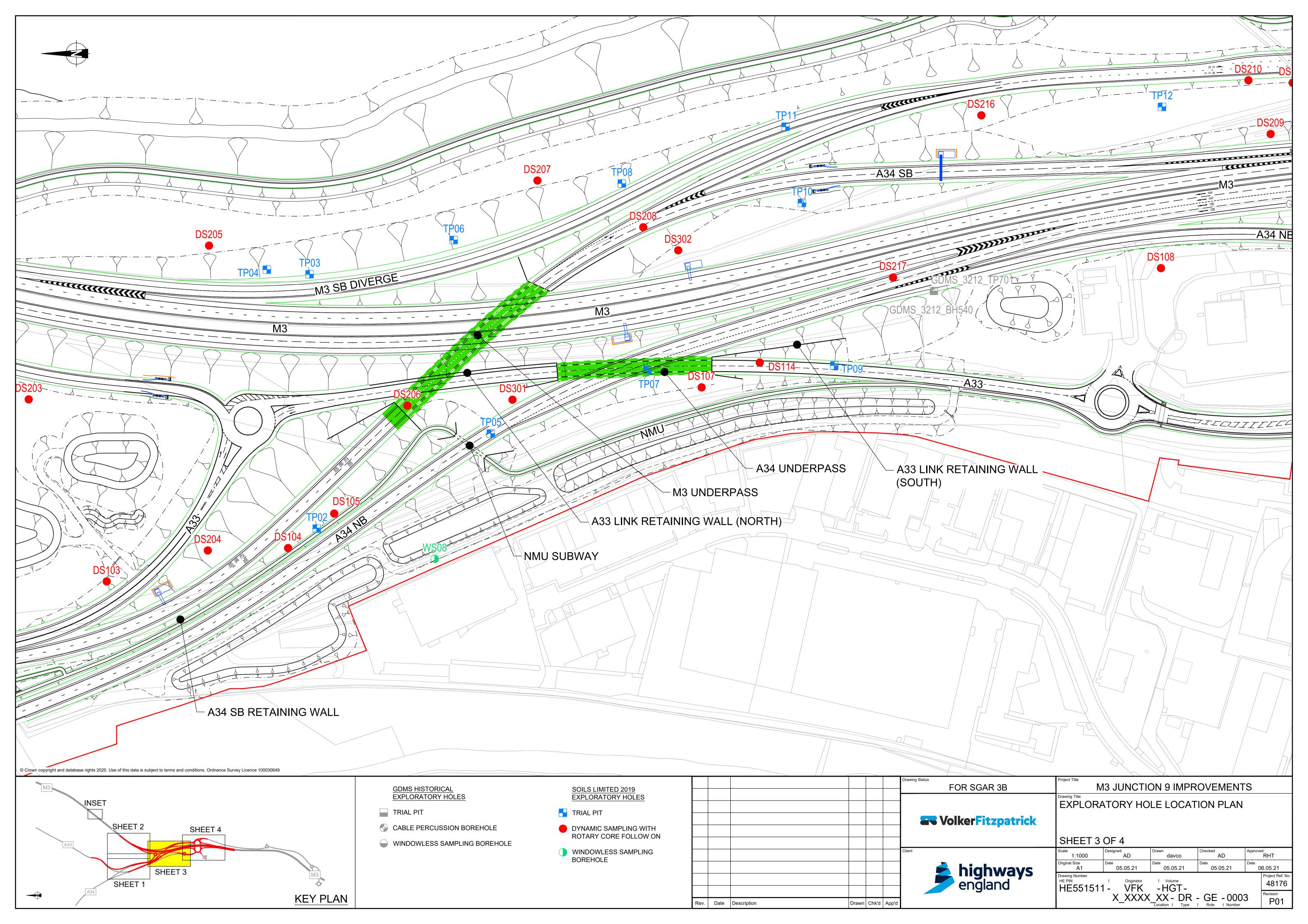
Component Number		Weighting Factor	Property or Parameter	Risk Score	Component score	Weighted componen score
1		10	Traffic flow	>=100,000 AADT	3	30
2	SOURCE	10	Rainfall depth (annual averages)	>740 to <1060 mm rainfall	2	20
3		10	Drainage area ratio	<=50	1	10
4		15	Infiltration method	"Region", shallow infiltration systems (e.g. infiltration basin)	2	30
5		20	Unsaturated zone	Depth to water table <15 m to >5 m	2	40
6		20	Flow type (Incorporates flow type an effective grain size)	Mixed fracture and intergranular flow (e.g. consolidated deposits or unconsolidated deposits of medium – coarse sand)	2	40
7	PATHWAY	5	Unsaturated Zone Clay Content	<=1% clay minerals	3	15
8		5	Organic Carbon	<=1% SOM	3	15
9		5	Unsaturated zone soil pH	pH <8 to >5	2	10

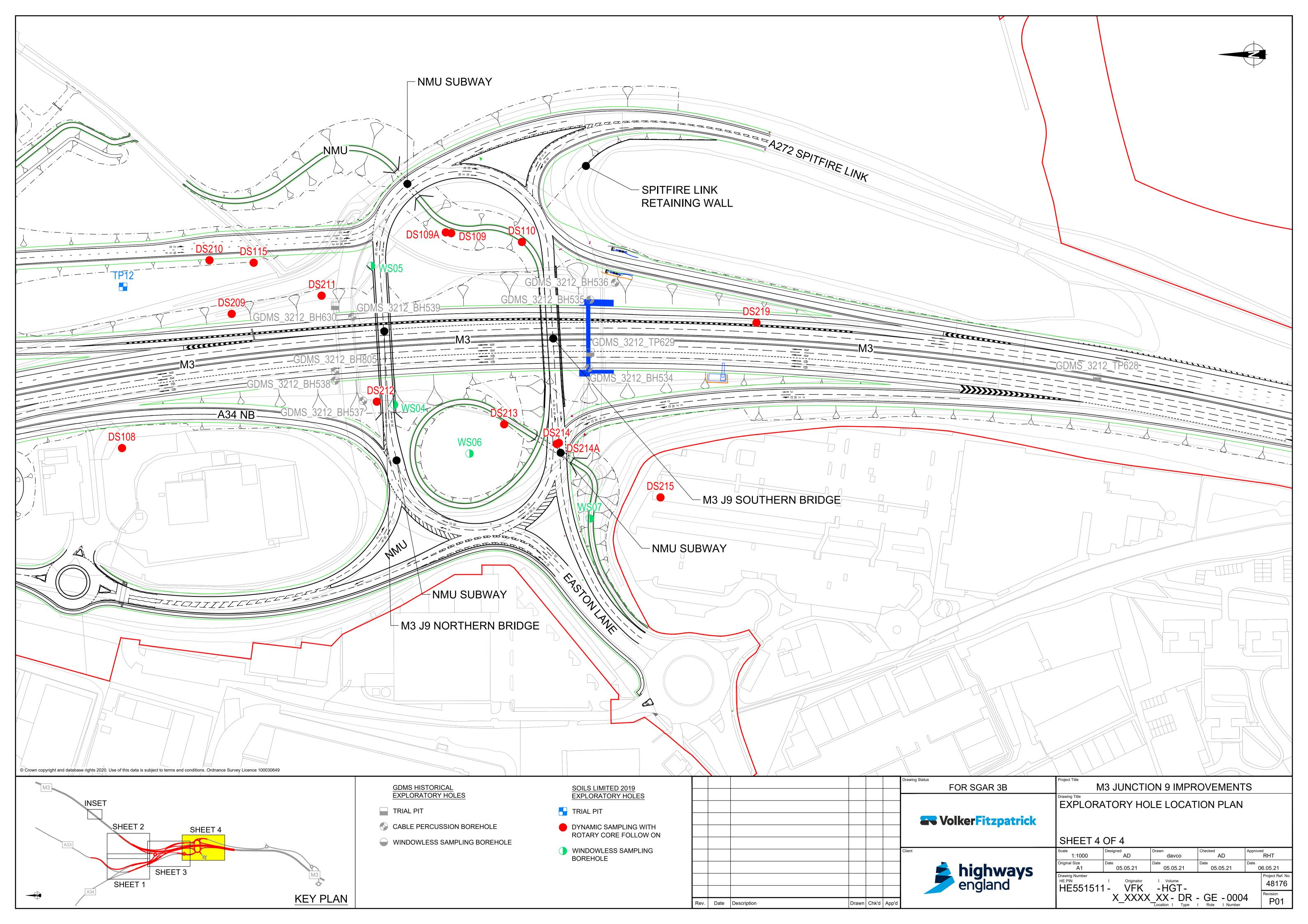
ype ad draining to outfall (m) A-road or Motorway)		arameters R	eset Spillage Risk	Go To Int	erface			
ad draining to outfall (m) A-road or Motorway)	A (main r	oad) B	C	D	E	F	1	
ad draining to outfall (m) A-road or Motorway)	Surface wat				11 1 1 1 1 1 1			
A-road or Motorway)	500			1				
	M							
site urban or rural?	Rural							
	Slip road							
ponse time for emergency ser								
(AADT two way)	149,961							
	11							
or (no/10° HGVkm/year)	0.43							
ental spillage	0.00129	0.00000	0.00000	0.00000	0.00000	0.00000	8	
ctor	0.60	24			1		1	-
ion incident	0.00078	0.00000	0.00000	0.00000	0.00000	0.00000	2-2-2	Retur
r than 0.01?	No						Totals	Perio
without pollution reduction me	asures 0.00078	0.00000	0.00000	0.00000	0.00000	0.00000	0.0008	1287
sures factor	0.6							
d with existing pollution reduction	on 0.00047	0.00000	0.00000	0.00000	0.00000	0.00000	0.0005	2146
asures factor	0.6							
proposed Pollution reduction r	measures 0.00028	0.00000	0.00000	0.00000	0.00000	0.00000	0.0003	3576
Factor		Haban Touris			System	Reduction Factor		
e Factor Accidental Spillages	Durant Treamb	Urban Trunk		Filter Dra		0.6		
Accidental Spillages lion HGV km/ year) Motorwa								
Accidental Spillages Ron HGV km/year) Motorwa tion 0.36	0.29	0.31			Ditch / Swale	0.6		
Accidental Spillages Notorwa tion HGV km/year) 0.36 d 0.43	0.29 0.83	0.36		Pond		0.5		
Accidental Spillages lian HGV km/ year) Motorwa tion 0.36 d 0.43 bout 3.09	0.29 0.83 3.09	0.36 5.35		Pond Wetland		0.5 0.4		
Accidental Spillages Ilon HGV km/year) Motorwa tion 0.36 d 0.43 bout 3.09 sad	0.29 0.83 3.09 0.88	0.36 5.35 1.46		Pond Wetland Soakawa	ay / Infiltration basin	0.5 0.4 0.6		
Accidental Spillages lian HGV km/ year) Motorwa tion 0.36 d 0.43 bout 3.09	0.29 0.83 3.09	0.36 5.35		Pond Wetland	ay / Infiltration basin t Trap	0.5 0.4		
	Snillanos		(year) Motorways Rural Trunk Urban Trunk	Vyear) Motorways Rural Trunk Urban Trunk	I Spillages Verar) Motorways Rural Trunk Urban Trunk Filter Dra	I Spillages V(year) Motorways Rural Trunk Urban Trunk Filter Drain	I Spillages System Optimum Risk Reduction Factor	for Spillages

Basin 5 HEWRAT

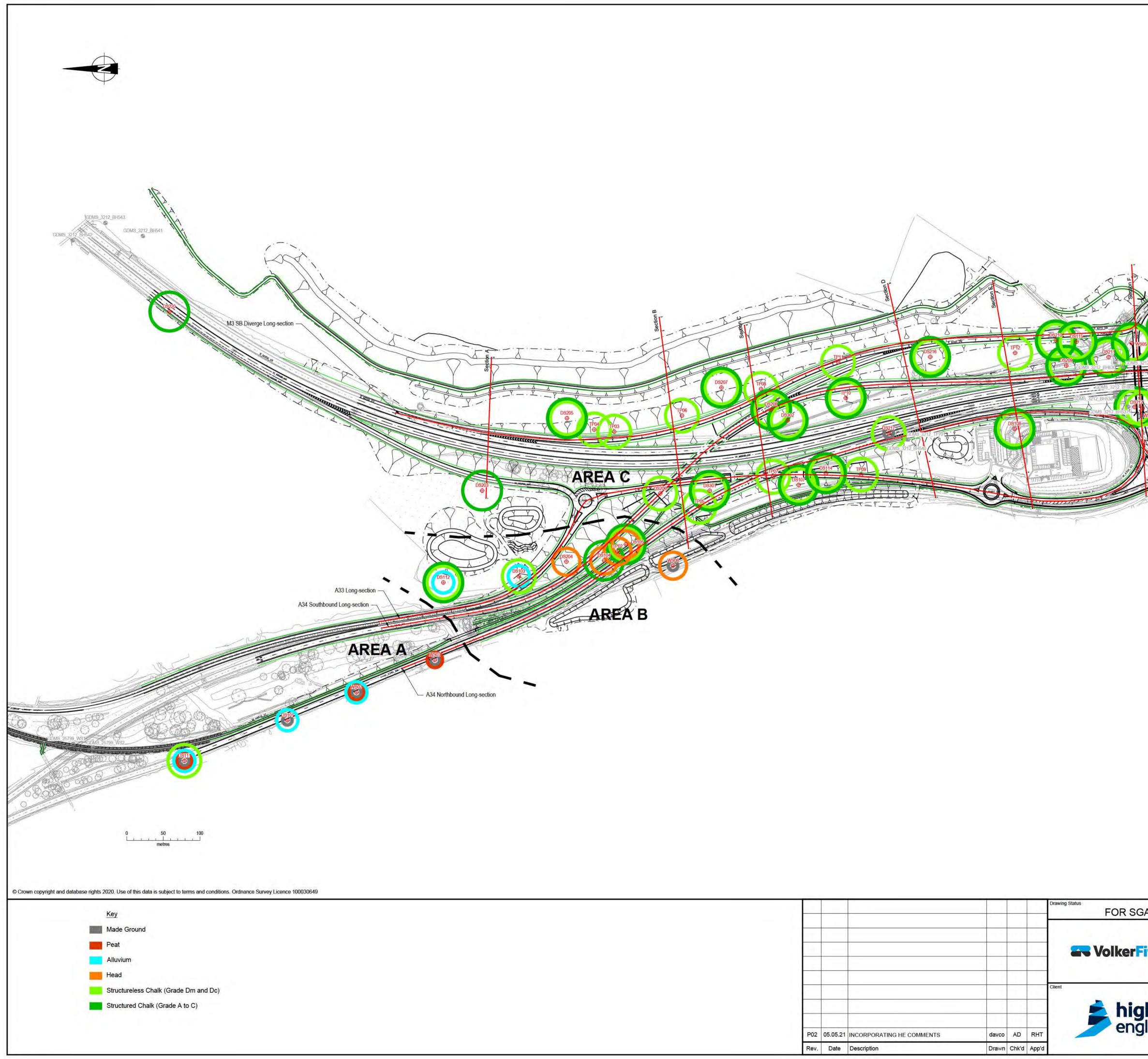

The worksheet should be read in conjunction with DMRB 11.3.10.


Basin 5 HEWRAT



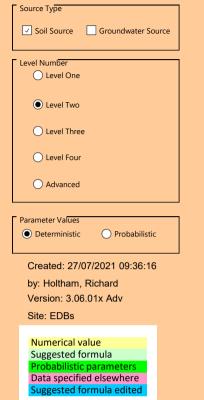

Appendix C

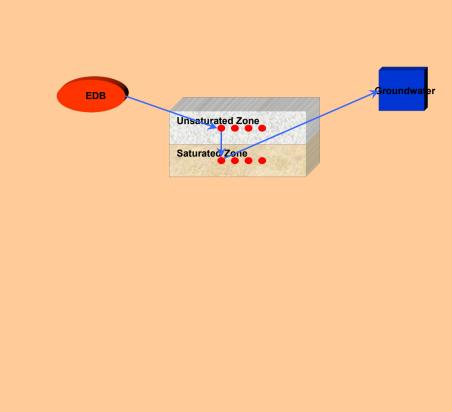
HE551551-VFK-HGT-X_XXXX_XX-DR-GE-004 Exploratory hole location plan



Appendix D

HE551551-VFK-HGT-X_XXXX_XX-DR-GE-0020 Geological plan




FOR SGA						
ColkerFit						
Client	Clie					
high engla						
Crigit	RHT	AD	davco	INCORPORATING HE COMMENTS	05.05.21	P02
	App'd	Chk'd	Drawn	Description	Date	Rev.

AR 3B	Project Title N Drawing Title	13 JUNCTIO	ON 9 IMPF	ROVEMEN	TS
itzpatrick	GEOLOG	ICAL PLAN	I		
hways land	Scale 1:2500 Original Size A1 Drawing Number HE PIN HE55151	Designed AD 01.12.20 1 - Originator VFK X_XXXX	Drawn davco Date 01.12.20 - HGT - XX - DR Location Type	Checked AD Date 04.12.20 - GE - 002	Approved RHT 08.12.20 Project Ref. No. 48176 Revision P02

Appendix E RAM model files (electronic appendix)

SOURCE CONCENTRATIONS: EDB

Source Data Options

Pore water concentrations
 Leaching test
 Soil contaminant concentrations

SOIL SOURCE

Source Type

Constant sourceDeclining source

Source Geometry

EDB_Source_length	28.03333	m
EDB_Source_width	150	m
EDB_Source_area	4205	m2
EDB_Source_thickness	1	m
EDB_Source_volume	4205	m3

Source Contaminant Information

Source determinand names		Copper Z	inc
EDB_Pore_water_concentration	mg/L	0.145	0.797
EDB_Input_concentration	mg/L	0.145	0.797

CONTAMINANT INFORMATION

			Species1 Species2
Source determinand names		•	2 <mark>Copper Zinc</mark>
Receptor Target Concentrations			
		Name	Values in mg/L
	Quality Standard 1	EAL	2
	Quality Standard 2		
	Quality Standard 3		
	Quality Standard 4		
Generic Contaminant Properties			
Contaminants_Organic_Carbon_Water_Partition_Co	efficient_Koc	L/kg	
Contaminants_Free_Water_Diffusion_Coefficient		m2/s	

HYDROGEOLOGICAL UNITS

Hydrogeological Units		Unsaturate S	Saturated Z
Hydrogeology_Unit_Thickness	m	3.8	5
Hydrogeology_Log_Hydraulic_Conductivity	log(m/s)		
	_		
Hydrogeology_Hydraulic_Conductivity	m/s	1.00E-05	1.00E-05
Hydrogeology_Hydraulic_Gradient	[-]	1	0.0076
Hydrogeology_Porosity	[-]	0.1	0.01
Hydrogeology_Velocity	m/s	5E-05	7.6E-06
Hydrogeology_Tortuosity	[-]		

ATTENUATION PARAMETERS

Hydrogeological Units		Unsaturate Saturate	d Zone
General properties			
Attenuation_Dry_bulk_density	kg/m3	2385	
Attenuation_Fraction_organic_carbon	[-]	0.001	
Contaminant specific parameters			
Copper			
Attenuation_Partition_Coefficient_Kd_Species_1	L/kg	13770	0
Attenuation_Retardation_Species_1	[-]	328415.5	1
Attenuation_Half_Life_Species_1	days	No Decay No Decay	y
Attenuation_Decay_Coefficient_Species_1	1/s	0	0
Zinc			
Attenuation_Partition_Coefficient_Kd_Species_2	L/kg	301	0
Attenuation_Retardation_Species_2	[-]	7179.85	1
Attenuation_Half_Life_Species_2	days	No Decay No Decay	y
Attenuation_Decay_Coefficient_Species_2	1/s	0	0

WATER BALANCE

Infiltration through the soil zone source Source Name: EDB

Effective_Rainfall	157680	mm/year
Infiltration_Factor	1	[-]
Infiltration_Rate	157680	mm/year
Infiltration_Area	4205	m2

Q_Infiltration

Infiltration rate check

5.0E-06 m/s

0.021010609 m3/s

PATHWAY SUMMARY

Path 1		Section 1		Section 2		Section 3		Section 4
Path 1 Type		Source		Unit		Unit		Receptor
Path 1 Name		EDB		Unsaturated Zone: No	ode 1	Saturated Zone: Node	e 1	Groundwater
Path 1 Process		Constant source		ADRD (1D)		Aquifer Dilution Only		Monitoring Borehole
Path 1 Standards							Target Standard	EAL
Path 1 Parameter1	Q_managed [m3/s]	0.000E+00	Velocity [m/s]	4.997E-05				
Path 1 Parameter2	Managed time [years]	0.000E+00	Dispersivity [m]	0.4				
Path 1 Parameter3	Q_path [m3/s]	2.101E-02	Travel Distance [m]	3.8				
Path 1 Parameter4	Q_decline [m3/s]	0.000E+00			Mixing Depth [m]	5.0		
Path 1 Parameter5					Mixing Width [m]	150.0		
Path 1 Parameter6			Q_Dilute [m3/s]	0	Q_Dilute [m3/s]	5.700E-05	Q_dilute [m3/s]	0.000E+00

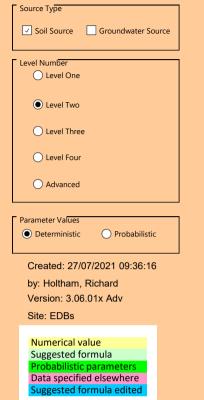
SIMULATION PARAMETERS

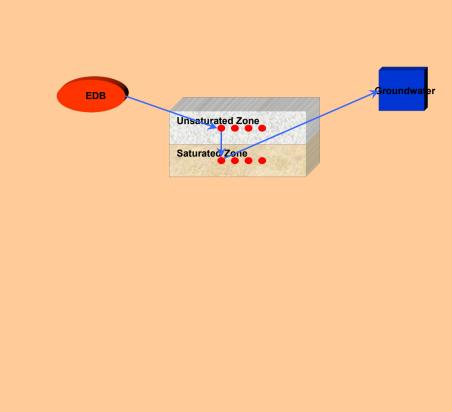
nte Carlo Analysis with Crystal Ball	Named Constants
Reported Percentile 95 Number of simulations 10000 Stop on calculation error	s_per_year 31557600 s_per_day 86400
Use same sequence of random numbers	Laplace Transform Solution Parameters
Minimise while running: Nothing 	sigma 0 nu 1
 All Spreadsheets (faster) Microsoft Excel (fastest) 	nsum 16 omega 11

Reporting Options

Include Remedial Targets and Attenuation Factors on the results sheets in Advanced level
 Use the array form of the RAM function

Include a set of timeslices for each contaminant in each pathway


Number of timeslices for breakthrough curves


4

The timeslices specified on the results sheets are saved below.

Path1 timeslices in years

CONTAMINANT INFORMATION

				Consider1	Creation 2	Crossies2	Crocios 4	Creation	Spacing C	Coosies7
		- • <u></u>			Species2	Species3	Species4	· ·	· ·	Species7
Source determinand names		•	7	Copper	Zinc	Cadmium	Pyrene	Fluoranthe	Anthracene	Phenanthr
Receptor Target Concentrations	Quality Standard 1 Quality Standard 2 Quality Standard 3 Quality Standard 4	Name EAL	ĺ	Values in m 2	g/L 5	5.00E-03	5.00E-06	5.00E-05	5.00E-05	5.00E-06
Generic Contaminant Properties										
		mg/L		2.93E+05	6.06E+05	6.51E+05	0.137	2.32E-01	5.37E-02	1.28
		mg/L		2.93E+05	6.06E+05	6.51E+05	0.137	2.32E-01	5.37E-02	1.28
Generic Contaminant Properties Contaminants_Solubility Contaminants_Henrys_Law_Constant		mg/L [-]		2.93E+05	6.06E+05	6.51E+05	0.137	2.32E-01	5.37E-02	1.28
Contaminants_Solubility				2.93E+05	6.06E+05	6.51E+05	0.137	2.32E-01	5.37E-02	1.28
Contaminants_Solubility	Coefficient_Koc			2.93E+05	6.06E+05	6.51E+05	0.137 6.80E+04		5.37E-02 2.35E+04	
Contaminants_Solubility Contaminants_Henrys_Law_Constant	_Coefficient_Koc	[-]		2.93E+05	6.06E+05	6.51E+05				

HYDROGEOLOGICAL UNITS

Hydrogeological Units		Unsaturate	Saturated Zo
Hydrogeology_Unit_Thickness	m	13.1	5
Hydrogeology_Log_Hydraulic_Conductivity	log(m/s)		
Hydrogeology_Hydraulic_Conductivity	m/s	5.0E-07	1.00E-05
Hydrogeology_Hydraulic_Gradient	[-]	1	0.0076
	[-]	1	0.0070
Hydrogeology_Porosity	[-]	0.1	0.01
Hydrogeology_Velocity	m/s	5E-06	7.6E-06
Hydrogeology_Tortuosity	[-]		

ATTENUATION PARAMETERS

Hydrogeological Units		Unsaturate Satu	urated Zoi
General properties			
Attenuation_Dry_bulk_density	kg/m3	2385	
Attenuation_Fraction_organic_carbon	[-]	0.01	
Contaminant specific parameters			
Copper			
Attenuation_Partition_Coefficient_Kd_Species_1	L/kg	13770	0
Attenuation_Retardation_Species_1	[-]	328415.5	1
Attenuation_Half_Life_Species_1	days		Decay
Attenuation_Decay_Coefficient_Species_1	1/s	0	0
Zinc			<u> </u>
Attenuation_Partition_Coefficient_Kd_Species_2	L/kg	301	0
		7179.85	1
Attenuation_Retardation_Species_2	[-]		
Attenuation_Half_Life_Species_2	days		Decay
Attenuation_Decay_Coefficient_Species_2	1/s	0	0
Cadmium			
Attenuation_Partition_Coefficient_Kd_Species_3	L/kg	751	0
Attenuation_Retardation_Species_3	[-]	17912.35	1
Attenuation_Half_Life_Species_3	days	No Decay No I	Decay
Attenuation_Decay_Coefficient_Species_3	1/s	0	0
Pyrene			
Attenuation_Partition_Coefficient_Kd_Species_4	L/kg	680	0
Attenuation_Retardation_Species_4	[-]	16219	1
Attenuation_Half_Life_Species_4	days	1925 No I	Decay
Attenuation_Decay_Coefficient_Species_4	1/s	4.17E-09	0
Fluoranthene			
Attenuation_Partition_Coefficient_Kd_Species_5	L/kg	491	0
Attenuation_Retardation_Species_5	[-]	11711.35	1
Attenuation_Half_Life_Species_5	days	462 No I	Decay
Attenuation_Decay_Coefficient_Species_5	1/s	1.74E-08	0
Anthracene			
Attenuation_Partition_Coefficient_Kd_Species_6	L/kg	235	0
Attenuation_Retardation_Species_6	[-]	5605.75	1
Attenuation_Half_Life_Species_6	days	365 No I	Decay
Attenuation_Decay_Coefficient_Species_6	1/s	2.2E-08	0
Phenanthrene	-, -		
Attenuation_Partition_Coefficient_Kd_Species_7	L/kg	209	0
Attenuation_Retardation_Species_7	[-]	4985.65	1
Attenuation_Half_Life_Species_7	days	730 No I	
Attenuation_Decay_Coefficient_Species_7	1/s	1.1E-08	0

WATER BALANCE

Infiltration through the soil zone source Source Name: EDB

Effective_Rainfall	15768	mm/year
Infiltration_Factor	1	[-]
Infiltration_Rate	15768	mm/year
Infiltration_Area	1351	m2

Q_Infiltration

Infiltration rate

5.0E-07

0.000675038 m3/s

PATHWAY SUMMARY

Path 1		Section 1		Section 2		Section 3		Section 4
Path 1 Type		Source		Unit		Unit		Receptor
Path 1 Name		EDB		Unsaturated Zone: No	ode 1	Saturated Zone: Node	1	Groundwater
Path 1 Process		Constant source		ADRD (1D)		Aquifer Dilution Only		Monitoring Borehole
Path 1 Standards							Target Standard	EAL
Path 1 Parameter1	Q_managed [m3/s]	0.000E+00	Velocity [m/s]	4.997E-06				
Path 1 Parameter2	Managed time [years]	0.000E+00	Dispersivity [m]	1.3				
Path 1 Parameter3	Q_path [m3/s]	6.750E-04	Travel Distance [m]	13.1				
Path 1 Parameter4	Q_decline [m3/s]	0.000E+00			Mixing Depth [m]			
Path 1 Parameter5					Mixing Width [m]			
Path 1 Parameter6			Q_Dilute [m3/s]	0	Q_Dilute [m3/s]	0.000E+00	Q dilute [m3/s]	0.000E+0

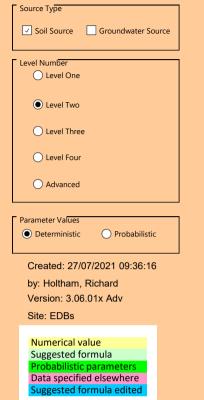
SIMULATION PARAMETERS

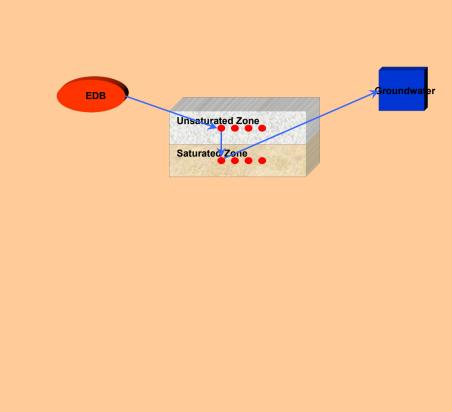
nte Carlo Analysis with Crystal Ball	Named Constants
Reported Percentile 95 Number of simulations 10000 Stop on calculation error	s_per_year 31557600 s_per_day 86400
Use same sequence of random numbers	Laplace Transform Solution Parameters
Minimise while running: Nothing 	sigma 0 nu 1
 All Spreadsheets (faster) Microsoft Excel (fastest) 	nsum 16 omega 11

Reporting Options

Include Remedial Targets and Attenuation Factors on the results sheets in Advanced level
 Use the array form of the RAM function

Include a set of timeslices for each contaminant in each pathway


Number of timeslices for breakthrough curves


4

The timeslices specified on the results sheets are saved below.

Path1 timeslices in years

CONTAMINANT INFORMATION

				Consider1	Creation 2	Crossies2	Coording 4	Creation	Spacing C	Coosies7
		- • <u></u>			Species2	Species3	Species4	· ·	· ·	Species7
Source determinand names		•	7	Copper	Zinc	Cadmium	Pyrene	Fluoranthe	Anthracene	Phenanthr
Receptor Target Concentrations	Quality Standard 1 Quality Standard 2 Quality Standard 3 Quality Standard 4	Name EAL	ĺ	Values in m 2	g/L 5	5.00E-03	5.00E-06	5.00E-05	5.00E-05	5.00E-06
Generic Contaminant Properties										
		mg/L		2.93E+05	6.06E+05	6.51E+05	0.137	2.32E-01	5.37E-02	1.28
		mg/L		2.93E+05	6.06E+05	6.51E+05	0.137	2.32E-01	5.37E-02	1.28
Generic Contaminant Properties Contaminants_Solubility Contaminants_Henrys_Law_Constant		mg/L [-]		2.93E+05	6.06E+05	6.51E+05	0.137	2.32E-01	5.37E-02	1.28
Contaminants_Solubility				2.93E+05	6.06E+05	6.51E+05	0.137	2.32E-01	5.37E-02	1.28
Contaminants_Solubility	Coefficient_Koc			2.93E+05	6.06E+05	6.51E+05	0.137 6.80E+04		5.37E-02 2.35E+04	
Contaminants_Solubility Contaminants_Henrys_Law_Constant	_Coefficient_Koc	[-]		2.93E+05	6.06E+05	6.51E+05				

HYDROGEOLOGICAL UNITS

Hydrogeological Units		Unsaturate S	aturated Zo
Hydrogeology_Unit_Thickness	m	13.1	20
Hydrogeology_Log_Hydraulic_Conductivity	log(m/s)		
Hydrogeology_Hydraulic_Conductivity	m/s	1.00E-06	0.00001
Hydrogeology_Hydraulic_Gradient	[-]	1	0.0076
Hydrogeology_Porosity	[-]	0.1	0.01
· · · · · ·			
Hydrogeology_Velocity	m/s	5E-06	7.6E-06
Hydrogeology_Tortuosity	[-]		

ATTENUATION PARAMETERS

Hydrogeological Units		Unsaturate Satu	urated Zor
General properties			
Attenuation_Dry_bulk_density	kg/m3	1800	
Attenuation_Fraction_organic_carbon	[-]	0.01	
Contaminant specific parameters			
Copper			
Attenuation_Partition_Coefficient_Kd_Species_1	L/kg	13770	0
Attenuation_Retardation_Species_1	[-]	247861	1
Attenuation_Half_Life_Species_1	days	No Decay No I	Decay
Attenuation_Decay_Coefficient_Species_1	1/s	0	0
Zinc			
Attenuation_Partition_Coefficient_Kd_Species_2	L/kg	301	0
Attenuation_Retardation_Species_2	[-]	5419	1
Attenuation_Half_Life_Species_2	days	No Decay No I	Decay
Attenuation_Decay_Coefficient_Species_2	1/s	0	0
Cadmium			
Attenuation_Partition_Coefficient_Kd_Species_3	L/kg	751	0
Attenuation_Retardation_Species_3	[-]	13519	1
Attenuation_Half_Life_Species_3	days	No Decay No I	Decay
Attenuation_Decay_Coefficient_Species_3	1/s	0	0
Pyrene			
Attenuation_Partition_Coefficient_Kd_Species_4	L/kg	680	0
Attenuation_Retardation_Species_4	[-]	12241	1
Attenuation_Half_Life_Species_4	days	60 No I	Decay
Attenuation_Decay_Coefficient_Species_4	1/s	1.34E-07	0
Fluoranthene			
Attenuation_Partition_Coefficient_Kd_Species_5	L/kg	491	0
Attenuation_Retardation_Species_5	[-]	8839	1
Attenuation_Half_Life_Species_5	days	182 No I	Decay
Attenuation_Decay_Coefficient_Species_5	1/s	4.41E-08	0
Anthracene			
Attenuation_Partition_Coefficient_Kd_Species_6	L/kg	235	0
Attenuation_Retardation_Species_6	[-]	4231	1
Attenuation_Half_Life_Species_6	days	210 No I	Decay
Attenuation_Decay_Coefficient_Species_6	1/s	3.82E-08	0
Phenanthrene			
Attenuation_Partition_Coefficient_Kd_Species_7	L/kg	209	0
Attenuation_Retardation_Species_7	[-]	3763	1
Attenuation_Half_Life_Species_7	days	90 No I	Decay
Attenuation_Decay_Coefficient_Species_7	1/s	8.91E-08	0

WATER BALANCE

Infiltration through the soil zone source Source Name: EDB

Effective_Rainfall	15768	mm/year
Infiltration_Factor	1	[-]
Infiltration_Rate	15768	mm/year
Infiltration_Area	1351	m2

Q_Infiltration

Infiltration rate check

5.00E-07 **m/s**

0.000675038 m3/s

PATHWAY SUMMARY

Path 1		Section 1		Section 2		Section 3		Section 4
Path 1 Type		Source		Unit		Unit		Receptor
Path 1 Name		EDB		Unsaturated Zone: N	ode 1	Saturated Zone: Node	21	Groundwater
Path 1 Process		Constant source		ADRD (1D)		Aquifer Dilution Only		Monitoring Borehol
Path 1 Standards							Target Standard	EAL
Path 1 Parameter1	Q_managed [m3/s]	0.000E+00	Velocity [m/s]	4.997E-06				
Path 1 Parameter2	Managed time [years]	0.000E+00	Dispersivity [m]	1.3				
Path 1 Parameter3	Q_path [m3/s]	6.750E-04	Travel Distance [m]	13.1				
Path 1 Parameter4	Q_decline [m3/s]	0.000E+00			Mixing Depth [m]	5.0		
Path 1 Parameter5					Mixing Width [m]	55.0		
Path 1 Parameter6			Q_Dilute [m3/s]	0	Q_Dilute [m3/s]	2.090E-05	Q_dilute [m3/s]	0.000E+0

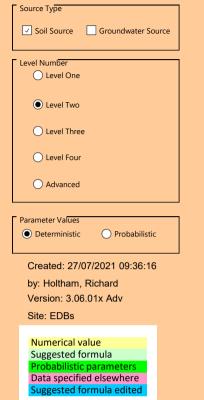
SIMULATION PARAMETERS

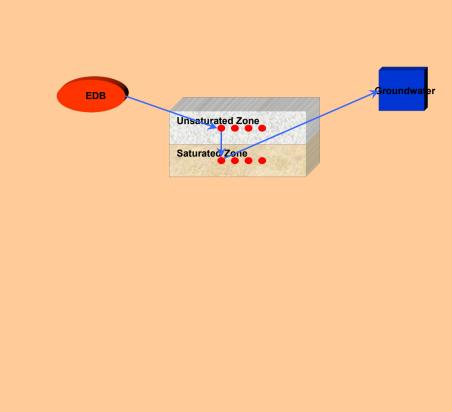
nte Carlo Analysis with Crystal Ball	Named Constants
Reported Percentile 95 Number of simulations 10000 Stop on calculation error	s_per_year 31557600 s_per_day 86400
Use same sequence of random numbers	Laplace Transform Solution Parameters
Minimise while running: Nothing 	sigma 0 nu 1
 All Spreadsheets (faster) Microsoft Excel (fastest) 	nsum 16 omega 11

Reporting Options

Include Remedial Targets and Attenuation Factors on the results sheets in Advanced level
 Use the array form of the RAM function

Include a set of timeslices for each contaminant in each pathway


Number of timeslices for breakthrough curves


4

The timeslices specified on the results sheets are saved below.

Path1 timeslices in years

CONTAMINANT INFORMATION

				Consider1	Creation 2	Crossies2	Coording 4	Creation	Spacing C	Coosies7
		- • <u></u>			Species2	Species3	Species4	· ·	· ·	Species7
Source determinand names		•	7	Copper	Zinc	Cadmium	Pyrene	Fluoranthe	Anthracene	Phenanthr
Receptor Target Concentrations	Quality Standard 1 Quality Standard 2 Quality Standard 3 Quality Standard 4	Name EAL	ĺ	Values in m 2	g/L 5	5.00E-03	5.00E-06	5.00E-05	5.00E-05	5.00E-06
Generic Contaminant Properties										
		mg/L		2.93E+05	6.06E+05	6.51E+05	0.137	2.32E-01	5.37E-02	1.28
		mg/L		2.93E+05	6.06E+05	6.51E+05	0.137	2.32E-01	5.37E-02	1.28
Generic Contaminant Properties Contaminants_Solubility Contaminants_Henrys_Law_Constant		mg/L [-]		2.93E+05	6.06E+05	6.51E+05	0.137	2.32E-01	5.37E-02	1.28
Contaminants_Solubility				2.93E+05	6.06E+05	6.51E+05	0.137	2.32E-01	5.37E-02	1.28
Contaminants_Solubility	Coefficient_Koc			2.93E+05	6.06E+05	6.51E+05	0.137 6.80E+04		5.37E-02 2.35E+04	
Contaminants_Solubility Contaminants_Henrys_Law_Constant	_Coefficient_Koc	[-]		2.93E+05	6.06E+05	6.51E+05				

HYDROGEOLOGICAL UNITS

Hydrogeological Units		Unsaturate S	aturated Zo
Hydrogeology_Unit_Thickness	m	5.8	5
Hydrogeology_Log_Hydraulic_Conductivity	log(m/s)		
	m/s	1.00E-06	0.00001
Hydrogeology_Hydraulic_Gradient	[-]	1	0.0076
			0.0070
Hydrogeology_Porosity	[-]	0.1	0.01
Hydrogeology_Velocity	m/s	5E-06	7.6E-06
Hydrogeology_Tortuosity	[-]		

ATTENUATION PARAMETERS

Hydrogeological Units		Unsaturate Satu	urated Zo
General properties			
Attenuation_Dry_bulk_density	kg/m3	2385	
Attenuation_Fraction_organic_carbon	[-]	0.001	
Contaminant specific parameters			
Copper			
Attenuation_Partition_Coefficient_Kd_Species_1	L/kg	13770	0
Attenuation_Retardation_Species_1	[-]	328415.5	1
Attenuation_Half_Life_Species_1	days	No Decay No	Decay
Attenuation_Decay_Coefficient_Species_1	1/s	0	0
Zinc			
Attenuation_Partition_Coefficient_Kd_Species_2	L/kg	301	0
Attenuation_Retardation_Species_2	[-]	7179.85	1
Attenuation_Half_Life_Species_2	days	No Decay No	Decay
Attenuation_Decay_Coefficient_Species_2	1/s	0	0
Cadmium	_,.		0
Attenuation_Partition_Coefficient_Kd_Species_3	L/kg	751	0
		17912.35	1
Attenuation_Retardation_Species_3	[-]		
Attenuation_Half_Life_Species_3	days		Decay
Attenuation_Decay_Coefficient_Species_3	1/s	0	0
Pyrene			
Attenuation_Partition_Coefficient_Kd_Species_4	L/kg	68	0
Attenuation_Retardation_Species_4	[-]	1622.8	1
Attenuation_Half_Life_Species_4	days	1925 No	Decay
Attenuation_Decay_Coefficient_Species_4	1/s	4.17E-09	0
Fluoranthene			
Attenuation_Partition_Coefficient_Kd_Species_5	L/kg	49.1	0
Attenuation_Retardation_Species_5	[-]	1172.035	1
Attenuation_Half_Life_Species_5	days	462 No	Decay
Attenuation_Decay_Coefficient_Species_5	1/s	1.74E-08	0
Anthracene			
Attenuation_Partition_Coefficient_Kd_Species_6	L/kg	23.5	0
Attenuation_Retardation_Species_6	[-]	561.475	1
Attenuation_Half_Life_Species_6	days	365 No	Decay
Attenuation_Decay_Coefficient_Species_6	1/s	2.2E-08	0
Phenanthrene			
Attenuation_Partition_Coefficient_Kd_Species_7	L/kg	20.9	0
Attenuation_Retardation_Species_7	[-]	499.465	1
Attenuation_Half_Life_Species_7	days	730 No	Decay

WATER BALANCE

Infiltration through the soil zone source Source Name: EDB

Effective_Rainfall	15768	mm/year
Infiltration_Factor	1	[-]
Infiltration_Rate	15768	mm/year
Infiltration_Area	2046	m2

Q_Infiltration

Infiltration rate check

5.0E-07 **m/s**

0.0010223 m3/s

PATHWAY SUMMARY

Path 1		Section 1		Section 2		Section 3		Section 4
Path 1 Type		Source		Unit		Unit		Receptor
Path 1 Name		EDB		Unsaturated Zone: No	ode 1	Saturated Zone: Node	1	Groundwater
Path 1 Process		Constant source		ADRD (1D)		Aquifer Dilution Only		Monitoring Borehol
Path 1 Standards							Target Standard	EAL
Path 1 Parameter1	Q_managed [m3/s]	0.000E+00	Velocity [m/s]	4.997E-06				
Path 1 Parameter2	Managed time [years]	0.000E+00	Dispersivity [m]	0.6				
Path 1 Parameter3	Q_path [m3/s]	1.022E-03	Travel Distance [m]	5.8				
Path 1 Parameter4	Q_decline [m3/s]	0.000E+00			Mixing Depth [m]			
Path 1 Parameter5					Mixing Width [m]			
Path 1 Parameter6			Q_Dilute [m3/s]	0	Q_Dilute [m3/s]	0.000E+00	Q dilute [m3/s]	0.000E+0

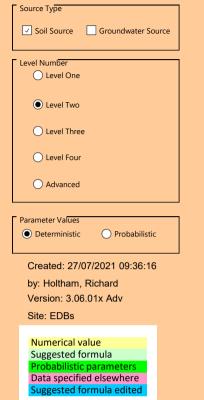
SIMULATION PARAMETERS

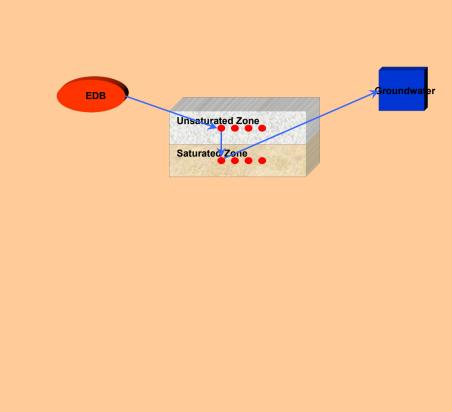
nte Carlo Analysis with Crystal Ball	Named Constants
Reported Percentile 95 Number of simulations 10000 Stop on calculation error	s_per_year 31557600 s_per_day 86400
Use same sequence of random numbers	Laplace Transform Solution Parameters
Minimise while running: Nothing 	sigma 0 nu 1
 All Spreadsheets (faster) Microsoft Excel (fastest) 	nsum 16 omega 11

Reporting Options

Include Remedial Targets and Attenuation Factors on the results sheets in Advanced level
 Use the array form of the RAM function

Include a set of timeslices for each contaminant in each pathway


Number of timeslices for breakthrough curves


4

The timeslices specified on the results sheets are saved below.

Path1 timeslices in years

CONTAMINANT INFORMATION

				Consider1	Creation 2	Crossies2	Coording 4	Creation	Spacing C	Coosies7
		- • <u></u>			Species2	Species3	Species4	· ·	· ·	Species7
Source determinand names		•	7	Copper	Zinc	Cadmium	Pyrene	Fluoranthe	Anthracene	Phenanthr
Receptor Target Concentrations	Quality Standard 1 Quality Standard 2 Quality Standard 3 Quality Standard 4	Name EAL	ĺ	Values in m 2	g/L 5	5.00E-03	5.00E-06	5.00E-05	5.00E-05	5.00E-06
Generic Contaminant Properties										
		mg/L		2.93E+05	6.06E+05	6.51E+05	0.137	2.32E-01	5.37E-02	1.28
		mg/L		2.93E+05	6.06E+05	6.51E+05	0.137	2.32E-01	5.37E-02	1.28
Generic Contaminant Properties Contaminants_Solubility Contaminants_Henrys_Law_Constant		mg/L [-]		2.93E+05	6.06E+05	6.51E+05	0.137	2.32E-01	5.37E-02	1.28
Contaminants_Solubility				2.93E+05	6.06E+05	6.51E+05	0.137	2.32E-01	5.37E-02	1.28
Contaminants_Solubility	Coefficient_Koc			2.93E+05	6.06E+05	6.51E+05	0.137 6.80E+04		5.37E-02 2.35E+04	
Contaminants_Solubility Contaminants_Henrys_Law_Constant	_Coefficient_Koc	[-]		2.93E+05	6.06E+05	6.51E+05				

HYDROGEOLOGICAL UNITS

Hydrogeological Units		Unsaturate S	aturated Zo
Hydrogeology_Unit_Thickness	m	5.8	5
Hydrogeology_Log_Hydraulic_Conductivity	log(m/s)		
Hydrogeology_Hydraulic_Conductivity	m/s	1.00E-06	0.00001
	-		
Hydrogeology_Hydraulic_Gradient	[-]	1	0.0076
Hydrogeology_Porosity	[-]	0.1	0.01
Hydrogeology_Velocity	m/s	9.99E-06	7.6E-06
Hydrogeology_Tortuosity	[-]		

ATTENUATION PARAMETERS

Hydrogeological Units		Unsaturate Satu	urated Zoi
General properties			
Attenuation_Dry_bulk_density	kg/m3	2385	
Attenuation_Fraction_organic_carbon	[-]	0.01	
Contaminant specific parameters			
Copper			
Attenuation_Partition_Coefficient_Kd_Species_1	L/kg	13770	0
Attenuation_Retardation_Species_1	[-]	328415.5	1
Attenuation_Half_Life_Species_1	days		Decay
Attenuation_Decay_Coefficient_Species_1	1/s	0	0
Zinc			0
Attenuation_Partition_Coefficient_Kd_Species_2	L/kg	301	0
		7179.85	1
Attenuation_Retardation_Species_2	[-]		
	days		Decay
Attenuation_Decay_Coefficient_Species_2	1/s	0	0
Cadmium			
Attenuation_Partition_Coefficient_Kd_Species_3	L/kg	751	0
Attenuation_Retardation_Species_3	[-]	17912.35	1
Attenuation_Half_Life_Species_3	days	No Decay No I	Decay
Attenuation_Decay_Coefficient_Species_3	1/s	0	0
Pyrene			
Attenuation_Partition_Coefficient_Kd_Species_4	L/kg	680	0
Attenuation_Retardation_Species_4	[-]	16219	1
Attenuation_Half_Life_Species_4	days	1925 No I	Decay
Attenuation_Decay_Coefficient_Species_4	1/s	4.17E-09	0
Fluoranthene			
Attenuation_Partition_Coefficient_Kd_Species_5	L/kg	491	0
Attenuation_Retardation_Species_5	[-]	11711.35	1
Attenuation_Half_Life_Species_5	days	462 No I	Decay
Attenuation_Decay_Coefficient_Species_5	1/s	1.74E-08	0
Anthracene			
Attenuation_Partition_Coefficient_Kd_Species_6	L/kg	235	0
Attenuation_Retardation_Species_6	[-]	5605.75	1
Attenuation_Half_Life_Species_6	days	365 No I	Decay
Attenuation_Decay_Coefficient_Species_6	1/s	2.2E-08	0
Phenanthrene			
Attenuation_Partition_Coefficient_Kd_Species_7	L/kg	209	0
Attenuation_Retardation_Species_7	[-]	4985.65	1
Attenuation_Half_Life_Species_7	days	730 No I	
Attenuation_Decay_Coefficient_Species_7	1/s	1.1E-08	0

WATER BALANCE

Infiltration through the soil zone source Source Name: EDB

Effective_Rainfall	31536	mm/year
Infiltration_Factor		[-]
Infiltration_Rate		mm/year
Infiltration_Area	2046	
Initiation_Area	2040	
Q_Infiltration	0.0020446	m3/s

Infiltration rate check

1.0E-06 m/s

PATHWAY SUMMARY

Path 1		Section 1		Section 2		Section 3		Section 4	
Path 1 Type		Source		Unit		Unit		Receptor	
Path 1 Name		EDB Unsaturated Zone		Unsaturated Zone: No	ode 1 Saturated Zone: Node		e 1 Groundwater		
Path 1 Process		Constant source		ADRD (1D)		Aquifer Dilution Only		Monitoring Borehol	
Path 1 Standards							Target Standard	EAL	
Path 1 Parameter1	Q_managed [m3/s]	0.000E+00	Velocity [m/s]	9.993E-06					
Path 1 Parameter2	Managed time [years]	0.000E+00	Dispersivity [m]	0.6					
Path 1 Parameter3	Q_path [m3/s]	2.045E-03	Travel Distance [m]	5.8					
Path 1 Parameter4	Q_decline [m3/s]	0.000E+00			Mixing Depth [m]				
Path 1 Parameter5					Mixing Width [m]				
Path 1 Parameter6			Q_Dilute [m3/s]	0	Q_Dilute [m3/s]	0.000E+00	Q dilute [m3/s]	0.000E+0	

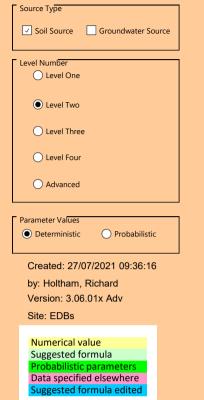
SIMULATION PARAMETERS

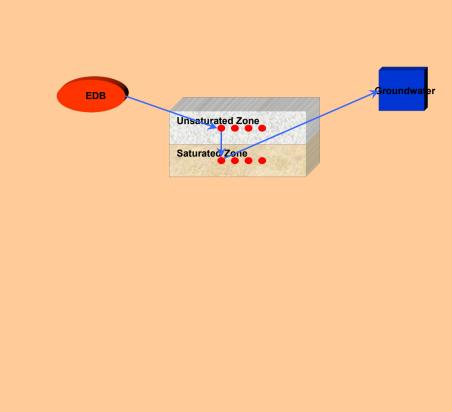
nte Carlo Analysis with Crystal Ball	Named Constants
Reported Percentile 95 Number of simulations 10000 Stop on calculation error	s_per_year 31557600 s_per_day 86400
Use same sequence of random numbers	Laplace Transform Solution Parameters
Minimise while running: Nothing 	sigma 0 nu 1
 All Spreadsheets (faster) Microsoft Excel (fastest) 	nsum 16 omega 11

Reporting Options

Include Remedial Targets and Attenuation Factors on the results sheets in Advanced level
 Use the array form of the RAM function

Include a set of timeslices for each contaminant in each pathway


Number of timeslices for breakthrough curves


4

The timeslices specified on the results sheets are saved below.

Path1 timeslices in years

CONTAMINANT INFORMATION

				nonine1	Crossies 2	Conscious?	Coocioc 4	Creation	Spacing C	Coosies7
				·	Species2	Species3	Species4	· ·	· ·	Species7
Source determinand names		•	7	Copper	Zinc	Cadmium	Pyrene	Fluoranthe	Anthracene	Phenanthr
Receptor Target Concentrations	Quality Standard 1 Quality Standard 2 Quality Standard 3 Quality Standard 4			/alues in m 2	g/L 5	5.00E-03	5.00E-06	5.00E-05	5.00E-05	5.00E-06
Generic Contaminant Properties										
		mg/L		2.93E+05	6.06E+05	6.51E+05	0.137	2.32E-01	5.37E-02	1.28
		mg/L		2.93E+05	6.06E+05	6.51E+05	0.137	2.32E-01	5.37E-02	1.28
Generic Contaminant Properties Contaminants_Solubility Contaminants_Henrys_Law_Constant		mg/L [-]		2.93E+05	6.06E+05	6.51E+05	0.137	2.32E-01	5.37E-02	1.28
Contaminants_Solubility				2.93E+05	6.06E+05	6.51E+05	0.137	2.32E-01	5.37E-02	1.28
Contaminants_Solubility	Coefficient_Koc			2.93E+05	6.06E+05	6.51E+05	0.137 6.80E+04		5.37E-02 2.35E+04	
Contaminants_Solubility Contaminants_Henrys_Law_Constant	Coefficient_Koc	[-]		2.93E+05	6.06E+05	6.51E+05				

HYDROGEOLOGICAL UNITS

Hydrogeological Units		Unsaturate S	aturated Zon
Hydrogeology_Unit_Thickness	m	10.8	5
Hydrogeology_Log_Hydraulic_Conductivity	log(m/s)		
Hydrogeology_Hydraulic_Conductivity	m/s	1.00E-06	0.00001
Hydrogeology_Hydraulic_Gradient	[-]	1	0.0076
Hydrogeology_Porosity	[-]	0.1	0.01
Hydrogeology_Velocity	m/s	5E-06	7.6E-06
Hydrogeology_Tortuosity	[-]		

ATTENUATION PARAMETERS

Hydrogeological Units		Unsaturate Satu	urated Zoi
General properties			
Attenuation_Dry_bulk_density	kg/m3	2385	
Attenuation_Fraction_organic_carbon	[-]	0.01	
Contaminant specific parameters			
Copper			
Attenuation_Partition_Coefficient_Kd_Species_1	L/kg	13770	0
Attenuation_Retardation_Species_1	[-]	328415.5	1
Attenuation_Half_Life_Species_1	days		Decay
Attenuation_Decay_Coefficient_Species_1	1/s	0	0
Zinc			<u> </u>
Attenuation_Partition_Coefficient_Kd_Species_2	L/kg	301	0
		7179.85	1
Attenuation_Retardation_Species_2	[-]		
Attenuation_Half_Life_Species_2	days		Decay
Attenuation_Decay_Coefficient_Species_2	1/s	0	0
Cadmium			
Attenuation_Partition_Coefficient_Kd_Species_3	L/kg	751	0
Attenuation_Retardation_Species_3	[-]	17912.35	1
Attenuation_Half_Life_Species_3	days	No Decay No I	Decay
Attenuation_Decay_Coefficient_Species_3	1/s	0	0
Pyrene			
Attenuation_Partition_Coefficient_Kd_Species_4	L/kg	680	0
Attenuation_Retardation_Species_4	[-]	16219	1
Attenuation_Half_Life_Species_4	days	1925 No I	Decay
Attenuation_Decay_Coefficient_Species_4	1/s	4.17E-09	0
Fluoranthene			
Attenuation_Partition_Coefficient_Kd_Species_5	L/kg	491	0
Attenuation_Retardation_Species_5	[-]	11711.35	1
Attenuation_Half_Life_Species_5	days	462 No I	Decay
Attenuation_Decay_Coefficient_Species_5	1/s	1.74E-08	0
Anthracene			
Attenuation_Partition_Coefficient_Kd_Species_6	L/kg	235	0
Attenuation_Retardation_Species_6	[-]	5605.75	1
Attenuation_Half_Life_Species_6	days	365 No I	Decay
Attenuation_Decay_Coefficient_Species_6	1/s	2.2E-08	0
Phenanthrene	-, -		
Attenuation_Partition_Coefficient_Kd_Species_7	L/kg	209	0
Attenuation_Retardation_Species_7	[-]	4985.65	1
Attenuation_Half_Life_Species_7	days	730 No I	
Attenuation_Decay_Coefficient_Species_7	1/s	1.1E-08	0

WATER BALANCE

Infiltration through the soil zone source Source Name: EDB

Effective_Rainfall	15768	mm/year
Infiltration_Factor	1	[-]
Infiltration_Rate	15768	mm/year
Infiltration_Area	2046	m2

Q_Infiltration

Infiltration rate check

5.0E-07 **m/s**

0.0010223 m3/s

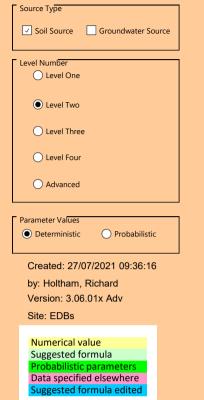
PATHWAY SUMMARY

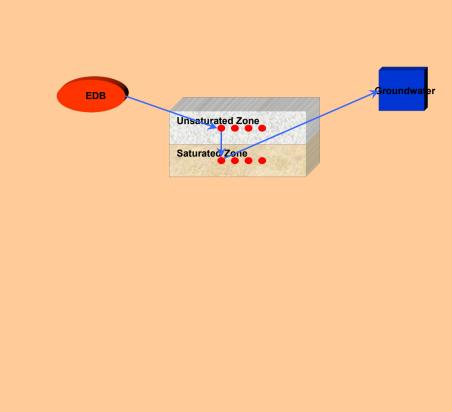
Path 1		Section 1		Section 2		Section 3		Section 4
Path 1 Type		Source		Unit		Unit		Receptor
Path 1 Name		EDB Unsaturated Zone: Node		ode 1	Saturated Zone: Node	1	Groundwater	
Path 1 Process		Constant source		ADRD (1D)		Aquifer Dilution Only		Monitoring Borehole
Path 1 Standards							Target Standard	EAL
Path 1 Parameter1	Q_managed [m3/s]	0.000E+00	Velocity [m/s]	4.997E-06				
Path 1 Parameter2	Managed time [years]	0.000E+00	Dispersivity [m]	1.1				
Path 1 Parameter3	Q_path [m3/s]	1.022E-03	Travel Distance [m]	10.8				
Path 1 Parameter4	Q_decline [m3/s]	0.000E+00			Mixing Depth [m]			
Path 1 Parameter5					Mixing Width [m]			
Path 1 Parameter6			Q_Dilute [m3/s]	0	Q_Dilute [m3/s]	0.000E+00	Q_dilute [m3/s]	0.000E+00

nte Carlo Analysis with Crystal Ball	Named Constants
Reported Percentile 95 Number of simulations 10000 Stop on calculation error	s_per_year 31557600 s_per_day 86400
Use same sequence of random numbers	Laplace Transform Solution Parameters
Minimise while running: Nothing 	sigma 0 nu 1
 All Spreadsheets (faster) Microsoft Excel (fastest) 	nsum 16 omega 11

Reporting Options

Include Remedial Targets and Attenuation Factors on the results sheets in Advanced level
 Use the array form of the RAM function


Include a set of timeslices for each contaminant in each pathway


Number of timeslices for breakthrough curves

4

The timeslices specified on the results sheets are saved below.

CONTAMINANT INFORMATION

				Consider1	Creation 2	Crossies2	Coording 4	Creation	Spacing C	Coosies7
		- • —			Species2	Species3	Species4	· ·	· ·	Species7
Source determinand names		•	7	Copper	Zinc	Cadmium	Pyrene	Fluoranthe	Anthracene	Phenanthr
Receptor Target Concentrations	Quality Standard 1 Quality Standard 2 Quality Standard 3 Quality Standard 4	Name EAL	ĺ	Values in m 2	g/L 5	5.00E-03	5.00E-06	5.00E-05	5.00E-05	5.00E-06
Generic Contaminant Properties										
		mg/L		2.93E+05	6.06E+05	6.51E+05	0.137	2.32E-01	5.37E-02	1.28
		mg/L		2.93E+05	6.06E+05	6.51E+05	0.137	2.32E-01	5.37E-02	1.28
Generic Contaminant Properties Contaminants_Solubility Contaminants_Henrys_Law_Constant		mg/L [-]		2.93E+05	6.06E+05	6.51E+05	0.137	2.32E-01	5.37E-02	1.28
Contaminants_Solubility				2.93E+05	6.06E+05	6.51E+05	0.137	2.32E-01	5.37E-02	1.28
Contaminants_Solubility	Coefficient_Koc			2.93E+05	6.06E+05	6.51E+05	0.137 6.80E+04		5.37E-02 2.35E+04	
Contaminants_Solubility Contaminants_Henrys_Law_Constant	_Coefficient_Koc	[-]		2.93E+05	6.06E+05	6.51E+05				

HYDROGEOLOGICAL UNITS

Hydrogeological Units		Unsaturate S	aturated Zo
Hydrogeology_Unit_Thickness	m	5.8	5
Hydrogeology_Log_Hydraulic_Conductivity	log(m/s)		
	m/s	1.00E-06	0.00001
Hydrogeology_Hydraulic_Gradient	[-]	1	0.0076
			0.0070
Hydrogeology_Porosity	[-]	0.1	0.01
Hydrogeology_Velocity	m/s	5E-06	7.6E-06
Hydrogeology_Tortuosity	[-]		

ATTENUATION PARAMETERS

Hydrogeological Units		Unsaturate Satu	urated Zoi
General properties			
Attenuation_Dry_bulk_density	kg/m3	2385	
Attenuation_Fraction_organic_carbon	[-]	0.01	
Contaminant specific parameters			
Copper			
Attenuation_Partition_Coefficient_Kd_Species_1	L/kg	13770	0
Attenuation_Retardation_Species_1	[-]	328415.5	1
Attenuation_Half_Life_Species_1	days		Decay
Attenuation_Decay_Coefficient_Species_1	1/s	0	0
Zinc			<u> </u>
Attenuation_Partition_Coefficient_Kd_Species_2	L/kg	301	0
		7179.85	1
Attenuation_Retardation_Species_2	[-]		
Attenuation_Half_Life_Species_2	days		Decay
Attenuation_Decay_Coefficient_Species_2	1/s	0	0
Cadmium			
Attenuation_Partition_Coefficient_Kd_Species_3	L/kg	751	0
Attenuation_Retardation_Species_3	[-]	17912.35	1
Attenuation_Half_Life_Species_3	days	No Decay No I	Decay
Attenuation_Decay_Coefficient_Species_3	1/s	0	0
Pyrene			
Attenuation_Partition_Coefficient_Kd_Species_4	L/kg	680	0
Attenuation_Retardation_Species_4	[-]	16219	1
Attenuation_Half_Life_Species_4	days	1925 No I	Decay
Attenuation_Decay_Coefficient_Species_4	1/s	4.17E-09	0
Fluoranthene			
Attenuation_Partition_Coefficient_Kd_Species_5	L/kg	491	0
Attenuation_Retardation_Species_5	[-]	11711.35	1
Attenuation_Half_Life_Species_5	days	462 No I	Decay
Attenuation_Decay_Coefficient_Species_5	1/s	1.74E-08	0
Anthracene			
Attenuation_Partition_Coefficient_Kd_Species_6	L/kg	235	0
Attenuation_Retardation_Species_6	[-]	5605.75	1
Attenuation_Half_Life_Species_6	days	365 No I	Decay
Attenuation_Decay_Coefficient_Species_6	1/s	2.2E-08	0
Phenanthrene	-, -		
Attenuation_Partition_Coefficient_Kd_Species_7	L/kg	209	0
Attenuation_Retardation_Species_7	[-]	4985.65	1
Attenuation_Half_Life_Species_7	days	730 No I	
Attenuation_Decay_Coefficient_Species_7	1/s	1.1E-08	0

WATER BALANCE

Infiltration through the soil zone source Source Name: EDB

Effective_Rainfall	15768	mm/year
Infiltration_Factor	1	[-]
Infiltration_Rate	15768	mm/year
Infiltration_Area	2046	m2

Q_Infiltration

Infiltration rate check

5.0E-07 **m/s**

0.0010223 m3/s

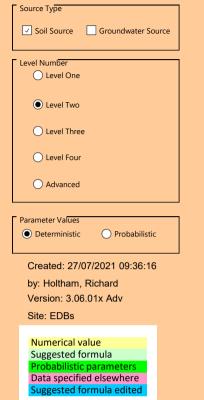
PATHWAY SUMMARY

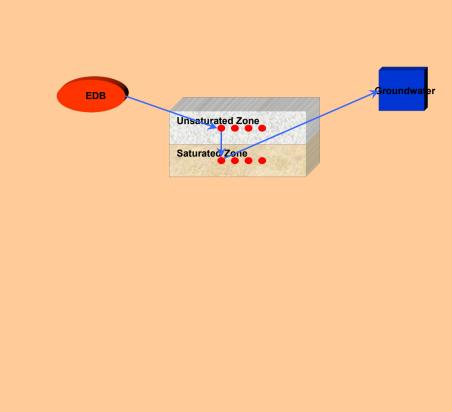
Path 1		Section 1		Section 2		Section 3	Section 4	
Path 1 Type		Source		Unit		Unit	Receptor	
Path 1 Name		EDB		Unsaturated Zone: No	ode 1	Saturated Zone: Node	1	Groundwater
Path 1 Process		Constant source		ADRD (1D)		Aquifer Dilution Only		Monitoring Borehol
Path 1 Standards							Target Standard	EAL
Path 1 Parameter1	Q_managed [m3/s]	0.000E+00	Velocity [m/s]	4.997E-06				
Path 1 Parameter2	Managed time [years]	0.000E+00	Dispersivity [m]	0.6				
Path 1 Parameter3	Q_path [m3/s]	1.022E-03	Travel Distance [m]	5.8				
Path 1 Parameter4	Q_decline [m3/s]	0.000E+00			Mixing Depth [m]			
Path 1 Parameter5					Mixing Width [m]			
Path 1 Parameter6			Q_Dilute [m3/s]	0	Q_Dilute [m3/s]	0.000E+00	Q dilute [m3/s]	0.000E+0

nte Carlo Analysis with Crystal Ball	Named Constants
Reported Percentile 95 Number of simulations 10000 Stop on calculation error	s_per_year 31557600 s_per_day 86400
Use same sequence of random numbers	Laplace Transform Solution Parameters
Minimise while running: Nothing 	sigma 0 nu 1
 All Spreadsheets (faster) Microsoft Excel (fastest) 	nsum 16 omega 11

Reporting Options

Include Remedial Targets and Attenuation Factors on the results sheets in Advanced level
 Use the array form of the RAM function


Include a set of timeslices for each contaminant in each pathway


Number of timeslices for breakthrough curves

4

The timeslices specified on the results sheets are saved below.

CONTAMINANT INFORMATION

				Consider1	Creation 2	Crossies2	Coording 4	Creation	Spacing C	Coosies7
		- • —			Species2	Species3	Species4	· ·	· ·	Species7
Source determinand names		•	7	Copper	Zinc	Cadmium	Pyrene	Fluoranthe	Anthracene	Phenanthr
Receptor Target Concentrations	Quality Standard 1 Quality Standard 2 Quality Standard 3 Quality Standard 4	Name EAL	ĺ	Values in m 2	g/L 5	5.00E-03	5.00E-06	5.00E-05	5.00E-05	5.00E-06
Generic Contaminant Properties										
		mg/L		2.93E+05	6.06E+05	6.51E+05	0.137	2.32E-01	5.37E-02	1.28
		mg/L		2.93E+05	6.06E+05	6.51E+05	0.137	2.32E-01	5.37E-02	1.28
Generic Contaminant Properties Contaminants_Solubility Contaminants_Henrys_Law_Constant		mg/L [-]		2.93E+05	6.06E+05	6.51E+05	0.137	2.32E-01	5.37E-02	1.28
Contaminants_Solubility				2.93E+05	6.06E+05	6.51E+05	0.137	2.32E-01	5.37E-02	1.28
Contaminants_Solubility	Coefficient_Koc			2.93E+05	6.06E+05	6.51E+05	0.137 6.80E+04		5.37E-02 2.35E+04	
Contaminants_Solubility Contaminants_Henrys_Law_Constant	_Coefficient_Koc	[-]		2.93E+05	6.06E+05	6.51E+05				

HYDROGEOLOGICAL UNITS

Hydrogeological Units		Unsaturate S	aturated Zo
Hydrogeology_Unit_Thickness	m	5.8	5
Hydrogeology_Log_Hydraulic_Conductivity	log(m/s)		
Hydrogeology_Hydraulic_Conductivity	m/s	1.00E-06	0.00001
	•		
Hydrogeology_Hydraulic_Gradient	[-]	1	0.0076
Hydrogeology_Porosity	[-]	0.1	0.01
Hydrogeology_Velocity	m/s	9.99E-06	7.6E-06
Hydrogeology_Tortuosity	[-]		

ATTENUATION PARAMETERS

Hydrogeological Units		Unsaturate Satu	irated Zo
General properties			
Attenuation_Dry_bulk_density	kg/m3	2385	
Attenuation_Fraction_organic_carbon	[-]	0.01	
Contaminant specific parameters			
Copper			
Attenuation_Partition_Coefficient_Kd_Species_1	L/kg	13770	0
Attenuation_Retardation_Species_1	[-]	328415.5	1
Attenuation_Half_Life_Species_1	days		Decay
Attenuation_Decay_Coefficient_Species_1	1/s	0	0
Zinc			
Attenuation_Partition_Coefficient_Kd_Species_2	L/kg	301	0
Attenuation_Retardation_Species_2		7179.85	1
	[-]		
Attenuation_Half_Life_Species_2	days		Decay
Attenuation_Decay_Coefficient_Species_2	1/s	0	0
Cadmium			
Attenuation_Partition_Coefficient_Kd_Species_3	L/kg	751	0
Attenuation_Retardation_Species_3	[-]	17912.35	1
Attenuation_Half_Life_Species_3	days	No Decay No I	Decay
Attenuation_Decay_Coefficient_Species_3	1/s	0	0
Pyrene			
Attenuation_Partition_Coefficient_Kd_Species_4	L/kg	680	0
Attenuation_Retardation_Species_4	[-]	16219	1
Attenuation_Half_Life_Species_4	days	60 No I	Decay
Attenuation_Decay_Coefficient_Species_4	1/s	1.34E-07	0
Fluoranthene			
Attenuation_Partition_Coefficient_Kd_Species_5	L/kg	491	0
Attenuation_Retardation_Species_5	[-]	11711.35	1
Attenuation_Half_Life_Species_5	days	182 No I	Decay
Attenuation_Decay_Coefficient_Species_5	1/s	4.41E-08	0
Anthracene			
Attenuation_Partition_Coefficient_Kd_Species_6	L/kg	235	0
Attenuation_Retardation_Species_6	[-]	5605.75	1
Attenuation_Half_Life_Species_6	days	210 No I	Decay
Attenuation_Decay_Coefficient_Species_6	1/s	3.82E-08	0
Phenanthrene			
Attenuation_Partition_Coefficient_Kd_Species_7	L/kg	209	0
Attenuation_Retardation_Species_7	[-]	4985.65	1
Attenuation_Half_Life_Species_7	days	90 No I	
Attenuation_Decay_Coefficient_Species_7	1/s	8.91E-08	0

WATER BALANCE

Infiltration through the soil zone source Source Name: EDB

Effective_Rainfall	31536	mm/year
Infiltration_Factor		[-]
Infiltration_Rate		mm/year
Infiltration_Area	2046	
Initiation_Area	2040	
Q_Infiltration	0.0020446	m3/s

Infiltration rate check

1.0E-06 m/s

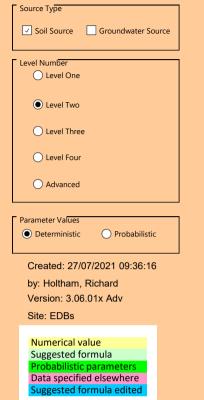
PATHWAY SUMMARY

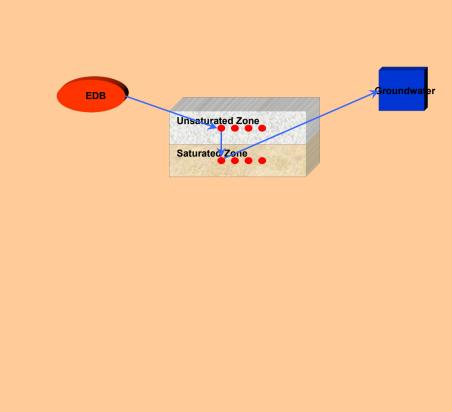
Path 1		Section 1 Section 2			Section 3	Section 4		
Path 1 Type		Source		Unit		Unit		Receptor
Path 1 Name		EDB		Unsaturated Zone: N	ode 1	Saturated Zone: Node	21	Groundwater
Path 1 Process		Constant source		ADRD (1D)		Aquifer Dilution Only		Monitoring Borehole
Path 1 Standards							Target Standard	EAL
Path 1 Parameter1	Q_managed [m3/s]	0.000E+00	Velocity [m/s]	9.993E-06				
Path 1 Parameter2	Managed time [years]	0.000E+00	Dispersivity [m]	0.6				
Path 1 Parameter3	Q_path [m3/s]	2.045E-03	Travel Distance [m]	5.8				
Path 1 Parameter4	Q_decline [m3/s]	0.000E+00			Mixing Depth [m]	5.0		
Path 1 Parameter5					Mixing Width [m]	22.0		
Path 1 Parameter6			Q_Dilute [m3/s]	0	Q_Dilute [m3/s]	8.360E-06	Q_dilute [m3/s]	0.000E+0

nte Carlo Analysis with Crystal Ball	Named Constants
Reported Percentile 95 Number of simulations 10000 Stop on calculation error	s_per_year 31557600 s_per_day 86400
Use same sequence of random numbers	Laplace Transform Solution Parameters
Minimise while running: Nothing 	sigma 0 nu 1
 All Spreadsheets (faster) Microsoft Excel (fastest) 	nsum 16 omega 11

Reporting Options

Include Remedial Targets and Attenuation Factors on the results sheets in Advanced level
 Use the array form of the RAM function


Include a set of timeslices for each contaminant in each pathway


Number of timeslices for breakthrough curves

4

The timeslices specified on the results sheets are saved below.

CONTAMINANT INFORMATION

				Consider1	Creation 2	Crossies2	Coording 4	Creation	Spacing C	Coosies7
		- • —			Species2	Species3	Species4	· ·	· ·	Species7
Source determinand names		•	7	Copper	Zinc	Cadmium	Pyrene	Fluoranthe	Anthracene	Phenanthr
Receptor Target Concentrations	Quality Standard 1 Quality Standard 2 Quality Standard 3 Quality Standard 4	Name EAL	ĺ	Values in m 2	g/L 5	5.00E-03	5.00E-06	5.00E-05	5.00E-05	5.00E-06
Generic Contaminant Properties										
		mg/L		2.93E+05	6.06E+05	6.51E+05	0.137	2.32E-01	5.37E-02	1.28
		mg/L		2.93E+05	6.06E+05	6.51E+05	0.137	2.32E-01	5.37E-02	1.28
Generic Contaminant Properties Contaminants_Solubility Contaminants_Henrys_Law_Constant		mg/L [-]		2.93E+05	6.06E+05	6.51E+05	0.137	2.32E-01	5.37E-02	1.28
Contaminants_Solubility				2.93E+05	6.06E+05	6.51E+05	0.137	2.32E-01	5.37E-02	1.28
Contaminants_Solubility	Coefficient_Koc			2.93E+05	6.06E+05	6.51E+05	0.137 6.80E+04		5.37E-02 2.35E+04	
Contaminants_Solubility Contaminants_Henrys_Law_Constant	_Coefficient_Koc	[-]		2.93E+05	6.06E+05	6.51E+05				

HYDROGEOLOGICAL UNITS

Hydrogeological Units		Unsaturate S	aturated Zor
Hydrogeology_Unit_Thickness	m	10.8	5
Hydrogeology_Log_Hydraulic_Conductivity	log(m/s)		
Hydrogeology_Hydraulic_Conductivity	m/s	1.00E-06	0.00001
Hydrogeology_Hydraulic_Gradient	[-]	1	0.0076
Hydrogeology_Porosity	[-]	0.1	0.01
Hydrogeology_Velocity	m/s	5E-06	7.6E-06
Hydrogeology_Tortuosity	[-]		

ATTENUATION PARAMETERS

Hydrogeological Units		Unsaturate Satu	irated Zo
General properties			
Attenuation_Dry_bulk_density	kg/m3	2385	
Attenuation_Fraction_organic_carbon	[-]	0.01	
Contaminant specific parameters			
Copper			
Attenuation_Partition_Coefficient_Kd_Species_1	L/kg	13770	0
Attenuation_Retardation_Species_1	[-]	328415.5	1
Attenuation_Half_Life_Species_1	days		Decay
Attenuation_Decay_Coefficient_Species_1	1/s	0	0
Zinc			
Attenuation_Partition_Coefficient_Kd_Species_2	L/kg	301	0
Attenuation_Retardation_Species_2		7179.85	1
	[-]		
Attenuation_Half_Life_Species_2	days		Decay
Attenuation_Decay_Coefficient_Species_2	1/s	0	0
Cadmium			
Attenuation_Partition_Coefficient_Kd_Species_3	L/kg	751	0
Attenuation_Retardation_Species_3	[-]	17912.35	1
Attenuation_Half_Life_Species_3	days	No Decay No I	Decay
Attenuation_Decay_Coefficient_Species_3	1/s	0	0
Pyrene			
Attenuation_Partition_Coefficient_Kd_Species_4	L/kg	680	0
Attenuation_Retardation_Species_4	[-]	16219	1
Attenuation_Half_Life_Species_4	days	60 No I	Decay
Attenuation_Decay_Coefficient_Species_4	1/s	1.34E-07	0
Fluoranthene			
Attenuation_Partition_Coefficient_Kd_Species_5	L/kg	491	0
Attenuation_Retardation_Species_5	[-]	11711.35	1
Attenuation_Half_Life_Species_5	days	182 No I	Decay
Attenuation_Decay_Coefficient_Species_5	1/s	4.41E-08	0
Anthracene			
Attenuation_Partition_Coefficient_Kd_Species_6	L/kg	235	0
Attenuation_Retardation_Species_6	[-]	5605.75	1
Attenuation_Half_Life_Species_6	days	210 No I	Decay
Attenuation_Decay_Coefficient_Species_6	1/s	3.82E-08	0
Phenanthrene			
Attenuation_Partition_Coefficient_Kd_Species_7	L/kg	209	0
Attenuation_Retardation_Species_7	[-]	4985.65	1
Attenuation_Half_Life_Species_7	days	90 No I	
Attenuation_Decay_Coefficient_Species_7	1/s	8.91E-08	0

WATER BALANCE

Infiltration through the soil zone source Source Name: EDB

Effective_Rainfall	15768	mm/year
Infiltration_Factor	1	[-]
Infiltration_Rate	15768	mm/year
Infiltration_Area	2046	m2

Q_Infiltration

Infiltration rate check

5.0E-07 **m/s**

0.0010223 m3/s

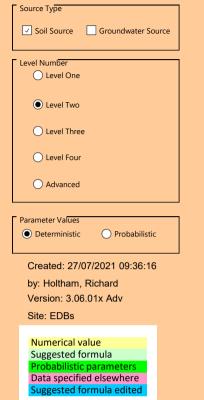
PATHWAY SUMMARY

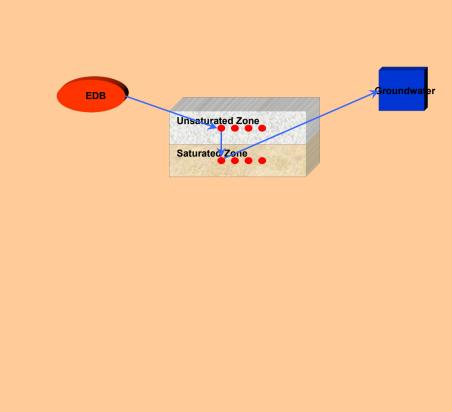
Path 1		Section 1 Section 2		Section 3		Section 4		
Path 1 Type		Source Unit			Unit		Receptor	
Path 1 Name		EDB		Unsaturated Zone: N	ode 1	Saturated Zone: Node	e 1	Groundwater
Path 1 Process		Constant source		ADRD (1D)		Aquifer Dilution Only		Monitoring Borehole
Path 1 Standards							Target Standard	EAL
Path 1 Parameter1	Q_managed [m3/s]	0.000E+00	Velocity [m/s]	4.997E-06				
Path 1 Parameter2	Managed time [years]	0.000E+00	Dispersivity [m]	1.1				
Path 1 Parameter3	Q_path [m3/s]	1.022E-03	Travel Distance [m]	10.8				
Path 1 Parameter4	Q_decline [m3/s]	0.000E+00			Mixing Depth [m]	5.0		
Path 1 Parameter5					Mixing Width [m]	22.0		
Path 1 Parameter6			Q_Dilute [m3/s]	0	Q_Dilute [m3/s]	8.360E-06	Q_dilute [m3/s]	0.000E+00

nte Carlo Analysis with Crystal Ball	Named Constants
Reported Percentile 95 Number of simulations 10000 Stop on calculation error	s_per_year 31557600 s_per_day 86400
Use same sequence of random numbers	Laplace Transform Solution Parameters
Minimise while running: Nothing 	sigma 0 nu 1
 All Spreadsheets (faster) Microsoft Excel (fastest) 	nsum 16 omega 11

Reporting Options

Include Remedial Targets and Attenuation Factors on the results sheets in Advanced level
 Use the array form of the RAM function


Include a set of timeslices for each contaminant in each pathway


Number of timeslices for breakthrough curves

4

The timeslices specified on the results sheets are saved below.

CONTAMINANT INFORMATION

				Consider1	Creation 2	Crossies2	Coording 4	Creation	Spacing C	Coosies7
		- • <u></u>			Species2	Species3	Species4	· ·	· ·	Species7
Source determinand names		•	7	Copper	Zinc	Cadmium	Pyrene	Fluoranthe	Anthracene	Phenanthr
Receptor Target Concentrations	Quality Standard 1 Quality Standard 2 Quality Standard 3 Quality Standard 4	Name EAL	ĺ	Values in m 2	g/L 5	5.00E-03	5.00E-06	5.00E-05	5.00E-05	5.00E-06
Generic Contaminant Properties										
		mg/L		2.93E+05	6.06E+05	6.51E+05	0.137	2.32E-01	5.37E-02	1.28
		mg/L		2.93E+05	6.06E+05	6.51E+05	0.137	2.32E-01	5.37E-02	1.28
Generic Contaminant Properties Contaminants_Solubility Contaminants_Henrys_Law_Constant		mg/L [-]		2.93E+05	6.06E+05	6.51E+05	0.137	2.32E-01	5.37E-02	1.28
Contaminants_Solubility				2.93E+05	6.06E+05	6.51E+05	0.137	2.32E-01	5.37E-02	1.28
Contaminants_Solubility	Coefficient_Koc			2.93E+05	6.06E+05	6.51E+05	0.137 6.80E+04		5.37E-02 2.35E+04	
Contaminants_Solubility Contaminants_Henrys_Law_Constant	_Coefficient_Koc	[-]		2.93E+05	6.06E+05	6.51E+05				

HYDROGEOLOGICAL UNITS

Hydrogeological Units		Unsaturate S	aturated Zo
Hydrogeology_Unit_Thickness	m	5.8	5
Hydrogeology_Log_Hydraulic_Conductivity	log(m/s)		
	m/s	1.00E-06	0.00001
Hydrogeology_Hydraulic_Gradient	[-]	1	0.0076
			0.0070
Hydrogeology_Porosity	[-]	0.1	0.01
Hydrogeology_Velocity	m/s	5E-06	7.6E-06
Hydrogeology_Tortuosity	[-]		

ATTENUATION PARAMETERS

Hydrogeological Units		Unsaturate Satu	urated Zo
General properties			
Attenuation_Dry_bulk_density	kg/m3	2385	
Attenuation_Fraction_organic_carbon	[-]	0.01	
Contaminant specific parameters			
Copper			
Attenuation_Partition_Coefficient_Kd_Species_1	L/kg	13770	0
Attenuation_Retardation_Species_1	[-]	328415.5	1
Attenuation_Half_Life_Species_1	days		Decay
Attenuation_Decay_Coefficient_Species_1	1/s	0	0
Zinc			
Attenuation_Partition_Coefficient_Kd_Species_2	L/kg	301	0
Attenuation_Retardation_Species_2	[-]	7179.85	1
Attenuation_Half_Life_Species_2	days		Decay
	1/s	0	0
Attenuation_Decay_Coefficient_Species_2	1/5	0	0
	1.4	754	0
Attenuation_Partition_Coefficient_Kd_Species_3	L/kg	751	0
Attenuation_Retardation_Species_3	[-]	17912.35	1
Attenuation_Half_Life_Species_3	days	No Decay No I	Decay
Attenuation_Decay_Coefficient_Species_3	1/s	0	0
Pyrene			
Attenuation_Partition_Coefficient_Kd_Species_4	L/kg	680	0
Attenuation_Retardation_Species_4	[-]	16219	1
Attenuation_Half_Life_Species_4	days	60 No I	Decay
Attenuation_Decay_Coefficient_Species_4	1/s	1.34E-07	0
Fluoranthene			
Attenuation_Partition_Coefficient_Kd_Species_5	L/kg	491	0
Attenuation_Retardation_Species_5	[-]	11711.35	1
Attenuation_Half_Life_Species_5	days	182 No I	Decay
Attenuation_Decay_Coefficient_Species_5	1/s	4.41E-08	0
Anthracene			
Attenuation_Partition_Coefficient_Kd_Species_6	L/kg	235	0
Attenuation_Retardation_Species_6	[-]	5605.75	1
Attenuation_Half_Life_Species_6	days	210 No I	Decay
Attenuation_Decay_Coefficient_Species_6	1/s	3.82E-08	0
Phenanthrene	•		
Attenuation_Partition_Coefficient_Kd_Species_7	L/kg	209	0
Attenuation_Retardation_Species_7	[-]	4985.65	1
Attenuation_Half_Life_Species_7	days	90 No I	
Attenuation_Decay_Coefficient_Species_7	1/s	8.91E-08	0

WATER BALANCE

Infiltration through the soil zone source Source Name: EDB

Effective_Rainfall	15768	mm/year
Infiltration_Factor	1	[-]
Infiltration_Rate	15768	mm/year
Infiltration_Area	2046	m2

Q_Infiltration

Infiltration rate check

5.0E-07 **m/s**

0.0010223 m3/s

PATHWAY SUMMARY

Path 1		Section 1		Section 2		Section 3		Section 4
Path 1 Type		Source		Unit		Unit		Receptor
Path 1 Name		EDB	Unsaturated Zone: Not		de 1 Saturated Zone: Node		21	Groundwater
Path 1 Process		Constant source		ADRD (1D)		Aquifer Dilution Only		Monitoring Borehole
Path 1 Standards							Target Standard	EAL
Path 1 Parameter1	Q_managed [m3/s]	0.000E+00	Velocity [m/s]	4.997E-06				
Path 1 Parameter2	Managed time [years]	0.000E+00	Dispersivity [m]	0.6				
Path 1 Parameter3	Q_path [m3/s]	1.022E-03	Travel Distance [m]	5.8				
Path 1 Parameter4	Q_decline [m3/s]	0.000E+00			Mixing Depth [m]	5.0		
Path 1 Parameter5					Mixing Width [m]	22.0		
Path 1 Parameter6			Q_Dilute [m3/s]	0	Q_Dilute [m3/s]	8.360E-06	Q_dilute [m3/s]	0.000E+0

nte Carlo Analysis with Crystal Ball	Named Constants
Reported Percentile 95 Number of simulations 10000 Stop on calculation error	s_per_year 31557600 s_per_day 86400
Use same sequence of random numbers	Laplace Transform Solution Parameters
Minimise while running: Nothing 	sigma 0 nu 1
 All Spreadsheets (faster) Microsoft Excel (fastest) 	nsum 16 omega 11

Reporting Options

Include Remedial Targets and Attenuation Factors on the results sheets in Advanced level
 Use the array form of the RAM function

Include a set of timeslices for each contaminant in each pathway

Number of timeslices for breakthrough curves

4

The timeslices specified on the results sheets are saved below.

Source Type	
Level Number	
C Level Two	EDB
C Level Three	
C Level Four	
Advanced	
Parameter Values Deterministic Probabilistic	
Created: 27/07/2021 09:36:16 by: Holtham, Richard Version: 3.06.01x Adv Site: EDBs	
Numerical value Suggested formula Probabilistic parameters Data specified elsewhere Suggested formula edited	

CONTAMINANT INFORMATION

	-	Species1 Species2	2
Source determinand names	-	2 <mark>Copper Zinc</mark>	
			_

Receptor Target Concentrations

	Name	Values in mg/L
Quality Standard 1	EAL	2 5
Quality Standard 2		
Quality Standard 3		
Quality Standard 4		

te Carlo Analysis with Crystal Ball	Named Constants
Reported Percentile 95 Number of simulations 10000 Stop on calculation error 10000	s_per_year 31557600 s_per_day 86400
Use same sequence of random numbers	Laplace Transform Solution Parameters
Minimise while running:	sigma 0 nu 1
All Spreadsheets (faster)	nsum 16

Reporting Options

Include Remedial Targets and Attenuation Factors on the results sheets in Advanced level
 Use the array form of the RAM function

Include a set of timeslices for each contaminant in each pathway

Number of timeslices for breakthrough curves

5

The timeslices specified on the results sheets are saved below.

TS	TS_Path1		
	10		
	20		
	30		
	40		
	50		

Source Type	
Level Number	
C Level Two	EDB
C Level Three	
C Level Four	
Advanced	
Parameter Values Deterministic Probabilistic	
Created: 27/07/2021 09:36:16 by: Holtham, Richard Version: 3.06.01x Adv Site: EDBs	
Numerical value Suggested formula Probabilistic parameters Data specified elsewhere Suggested formula edited	

CONTAMINANT INFORMATION

				Species1	Species2	Species3	Species4	Species5	Species6	Species7
Source determinand names		÷	7	Copper	Zinc	Cadmium	Pyrene	Fluoranthe	Anthracen	Phenanthre
Receptor Target Concentrations										
		Name		Values in m	ng/L					
	Quality Standard 1	EAL		2		5 5.00E-03	5.00E-06	5.00E-05	5.00E-05	5.00E-06
	Quality Standard 2									
	Quality Standard 3									
	Quality Standard 4									
Generic Contaminant Properties										
Contaminants_Solubility		mg/L		2.93E+05	6.06E+0	5 6.51E+05	0.137	2.32E-01	5.37E-02	1.28
Contaminants_Henrys_Law_Constant		[-]								
Contaminants_Organic_Carbon_Water_Partition_	_Coefficient_Koc	L/kg					6.80E+04	4.91E+04	2.35E+04	2.09E+04

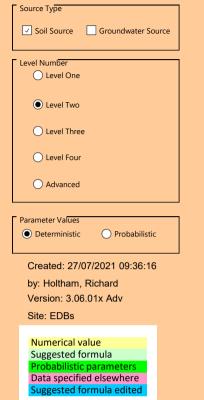
SIMULATION PARAMETERS

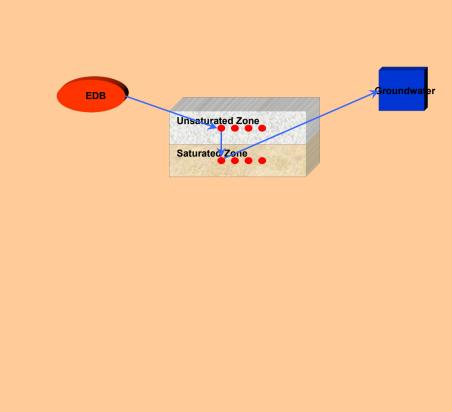
te Carlo Analysis with Crystal Ball	Named Constants
Reported Percentile 95 Number of simulations 10000 Stop on calculation error 10000	s_per_year 31557600 s_per_day 86400
Use same sequence of random numbers	Laplace Transform Solution Parameters
Minimise while running:	sigma 0 nu 1
All Spreadsheets (faster)	nsum 16

Reporting Options

Include Remedial Targets and Attenuation Factors on the results sheets in Advanced level
 Use the array form of the RAM function

Include a set of timeslices for each contaminant in each pathway


Number of timeslices for breakthrough curves


5

The timeslices specified on the results sheets are saved below.

Path1 timeslices in years

TS	Path1
	10
	20
	30
	40
	50

CONTAMINANT INFORMATION

				Consider1	Creation 2	Crossies2	Coording 4	Creation	Spacing C	Coosies7
		- • —			Species2	Species3	Species4	· ·	· ·	Species7
Source determinand names		•	7	Copper	Zinc	Cadmium	Pyrene	Fluoranthe	Anthracene	Phenanthr
Receptor Target Concentrations	Quality Standard 1 Quality Standard 2 Quality Standard 3 Quality Standard 4	Name EAL	ĺ	Values in m 2	g/L 5	5.00E-03	5.00E-06	5.00E-05	5.00E-05	5.00E-06
Generic Contaminant Properties										
		mg/L		2.93E+05	6.06E+05	6.51E+05	0.137	2.32E-01	5.37E-02	1.28
		mg/L		2.93E+05	6.06E+05	6.51E+05	0.137	2.32E-01	5.37E-02	1.28
Generic Contaminant Properties Contaminants_Solubility Contaminants_Henrys_Law_Constant		mg/L [-]		2.93E+05	6.06E+05	6.51E+05	0.137	2.32E-01	5.37E-02	1.28
Contaminants_Solubility				2.93E+05	6.06E+05	6.51E+05	0.137	2.32E-01	5.37E-02	1.28
Contaminants_Solubility	Coefficient_Koc			2.93E+05	6.06E+05	6.51E+05	0.137 6.80E+04		5.37E-02 2.35E+04	
Contaminants_Solubility Contaminants_Henrys_Law_Constant	_Coefficient_Koc	[-]		2.93E+05	6.06E+05	6.51E+05				

HYDROGEOLOGICAL UNITS

Hydrogeological Units		Unsaturate S	aturated Zo
Hydrogeology_Unit_Thickness	m	3.8	5
Hydrogeology_Log_Hydraulic_Conductivity	log(m/s)		
	m/s	1.00E-06	0.00001
Hydrogeology_Hydraulic_Gradient	[-]	1	0.0076
Hydrogeology_Porosity	[-]	0.1	0.01
Hydrogeology_Velocity	m/s	5E-06	7.6E-06
Hydrogeology_Tortuosity	[-]		

ATTENUATION PARAMETERS

Hydrogeological Units		Unsaturate Satu	urated Zoi
General properties			
Attenuation_Dry_bulk_density	kg/m3	2385	
Attenuation_Fraction_organic_carbon	[-]	0.01	
Contaminant specific parameters			
Copper			
Attenuation_Partition_Coefficient_Kd_Species_1	L/kg	13770	0
Attenuation_Retardation_Species_1	[-]	328415.5	1
Attenuation_Half_Life_Species_1	days		Decay
Attenuation_Decay_Coefficient_Species_1	1/s	0	0
Zinc			<u> </u>
Attenuation_Partition_Coefficient_Kd_Species_2	L/kg	301	0
		7179.85	1
Attenuation_Retardation_Species_2	[-]		
Attenuation_Half_Life_Species_2	days		Decay
Attenuation_Decay_Coefficient_Species_2	1/s	0	0
Cadmium			
Attenuation_Partition_Coefficient_Kd_Species_3	L/kg	751	0
Attenuation_Retardation_Species_3	[-]	17912.35	1
Attenuation_Half_Life_Species_3	days	No Decay No I	Decay
Attenuation_Decay_Coefficient_Species_3	1/s	0	0
Pyrene			
Attenuation_Partition_Coefficient_Kd_Species_4	L/kg	680	0
Attenuation_Retardation_Species_4	[-]	16219	1
Attenuation_Half_Life_Species_4	days	1925 No I	Decay
Attenuation_Decay_Coefficient_Species_4	1/s	4.17E-09	0
Fluoranthene			
Attenuation_Partition_Coefficient_Kd_Species_5	L/kg	491	0
Attenuation_Retardation_Species_5	[-]	11711.35	1
Attenuation_Half_Life_Species_5	days	462 No I	Decay
Attenuation_Decay_Coefficient_Species_5	1/s	1.74E-08	0
Anthracene			
Attenuation_Partition_Coefficient_Kd_Species_6	L/kg	235	0
Attenuation_Retardation_Species_6	[-]	5605.75	1
Attenuation_Half_Life_Species_6	days	365 No I	Decay
Attenuation_Decay_Coefficient_Species_6	1/s	2.2E-08	0
Phenanthrene	-, -		
Attenuation_Partition_Coefficient_Kd_Species_7	L/kg	209	0
Attenuation_Retardation_Species_7	[-]	4985.65	1
Attenuation_Half_Life_Species_7	days	730 No I	
Attenuation_Decay_Coefficient_Species_7	1/s	1.1E-08	0

WATER BALANCE

Infiltration through the soil zone source Source Name: EDB

Effective_Rainfall	15768	mm/year
Infiltration_Factor	1	[-]
Infiltration_Rate	15768	mm/year
Infiltration_Area	4205	m2

Q_Infiltration

Infiltration rate check

5.00E-07 **m/s**

0.002101061 m3/s

PATHWAY SUMMARY

Path 1		Section 1	Section 2		Section 2		Section 3		Section 4	
Path 1 Type		Source		Unit		Unit		Receptor		
Path 1 Name		EDB	Unsaturated Zone: Noc		ode 1 Saturated Zone: Node		1	Groundwater		
Path 1 Process		Constant source		ADRD (1D)		Aquifer Dilution Only		Monitoring Borehole		
Path 1 Standards							Target Standard	EAL		
Path 1 Parameter1	Q_managed [m3/s]	0.000E+00	Velocity [m/s]	4.997E-06						
Path 1 Parameter2	Managed time [years]	0.000E+00	Dispersivity [m]	0.4						
Path 1 Parameter3	Q_path [m3/s]	2.101E-03	Travel Distance [m]	3.8						
Path 1 Parameter4	Q_decline [m3/s]	0.000E+00			Mixing Depth [m]					
Path 1 Parameter5					Mixing Width [m]					
Path 1 Parameter6			Q_Dilute [m3/s]	0	Q_Dilute [m3/s]	0.000E+00	Q dilute [m3/s]	0.000E+0		

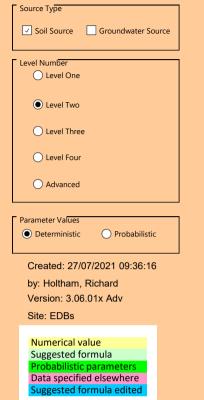
SIMULATION PARAMETERS

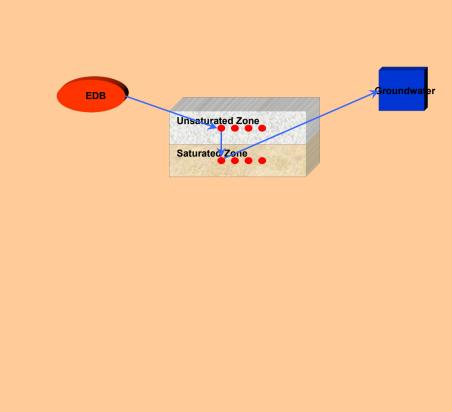
nte Carlo Analysis with Crystal Ball	Named Constants
Reported Percentile 95 Number of simulations 10000 Stop on calculation error	s_per_year 31557600 s_per_day 86400
Use same sequence of random numbers	Laplace Transform Solution Parameters
Minimise while running: Nothing 	sigma 0 nu 1
 All Spreadsheets (faster) Microsoft Excel (fastest) 	nsum 16 omega 11

Reporting Options

Include Remedial Targets and Attenuation Factors on the results sheets in Advanced level
 Use the array form of the RAM function

Include a set of timeslices for each contaminant in each pathway


Number of timeslices for breakthrough curves


4

The timeslices specified on the results sheets are saved below.

Path1 timeslices in years

CONTAMINANT INFORMATION

				Consider1	Creation 2	Crossies2	Crocios 4	Creation	Spacing C	Coosies7
		- • <u></u>			Species2	Species3	Species4	· ·	· ·	Species7
Source determinand names		•	7	Copper	Zinc	Cadmium	Pyrene	Fluoranthe	Anthracene	Phenanthr
Receptor Target Concentrations	Quality Standard 1 Quality Standard 2 Quality Standard 3 Quality Standard 4	Name EAL	ĺ	Values in m 2	g/L 5	5.00E-03	5.00E-06	5.00E-05	5.00E-05	5.00E-06
Generic Contaminant Properties										
		mg/L		2.93E+05	6.06E+05	6.51E+05	0.137	2.32E-01	5.37E-02	1.28
		mg/L		2.93E+05	6.06E+05	6.51E+05	0.137	2.32E-01	5.37E-02	1.28
Generic Contaminant Properties Contaminants_Solubility Contaminants_Henrys_Law_Constant		mg/L [-]		2.93E+05	6.06E+05	6.51E+05	0.137	2.32E-01	5.37E-02	1.28
Contaminants_Solubility				2.93E+05	6.06E+05	6.51E+05	0.137	2.32E-01	5.37E-02	1.28
Contaminants_Solubility	Coefficient_Koc			2.93E+05	6.06E+05	6.51E+05	0.137 6.80E+04		5.37E-02 2.35E+04	
Contaminants_Solubility Contaminants_Henrys_Law_Constant	_Coefficient_Koc	[-]		2.93E+05	6.06E+05	6.51E+05				

HYDROGEOLOGICAL UNITS

Hydrogeological Units		Unsaturate S	aturated Zo
Hydrogeology_Unit_Thickness	m	3.8	5
Hydrogeology_Log_Hydraulic_Conductivity	log(m/s)		
	m/s	1.00E-06	0.00001
Hydrogeology_Hydraulic_Gradient	[-]	1	0.0076
Hydrogeology_Porosity	[-]	0.1	0.01
Hydrogeology_Velocity	m/s	5E-06	7.6E-06
Hydrogeology_Tortuosity	[-]		

ATTENUATION PARAMETERS

Hydrogeological Units		Unsaturate Satu	irated Zo
General properties			
Attenuation_Dry_bulk_density	kg/m3	2385	
Attenuation_Fraction_organic_carbon	[-]	0.01	
Contaminant specific parameters			
Copper			
Attenuation_Partition_Coefficient_Kd_Species_1	L/kg	13770	0
Attenuation_Retardation_Species_1	[-]	328415.5	1
Attenuation_Half_Life_Species_1	days		Decay
Attenuation_Decay_Coefficient_Species_1	1/s	0	0
Zinc			0
Attenuation_Partition_Coefficient_Kd_Species_2	L/kg	301	0
Attenuation_Retardation_Species_2		7179.85	1
	[-]		
Attenuation_Half_Life_Species_2	days		Decay
Attenuation_Decay_Coefficient_Species_2	1/s	0	0
Cadmium			
Attenuation_Partition_Coefficient_Kd_Species_3	L/kg	751	0
Attenuation_Retardation_Species_3	[-]	17912.35	1
Attenuation_Half_Life_Species_3	days	No Decay No I	Decay
Attenuation_Decay_Coefficient_Species_3	1/s	0	0
Pyrene			
Attenuation_Partition_Coefficient_Kd_Species_4	L/kg	680	0
Attenuation_Retardation_Species_4	[-]	16219	1
Attenuation_Half_Life_Species_4	days	60 No I	Decay
Attenuation_Decay_Coefficient_Species_4	1/s	1.34E-07	0
Fluoranthene			
Attenuation_Partition_Coefficient_Kd_Species_5	L/kg	491	0
Attenuation_Retardation_Species_5	[-]	11711.35	1
Attenuation_Half_Life_Species_5	days	182 No I	Decay
Attenuation_Decay_Coefficient_Species_5	1/s	4.41E-08	0
Anthracene			
Attenuation_Partition_Coefficient_Kd_Species_6	L/kg	235	0
Attenuation_Retardation_Species_6	[-]	5605.75	1
Attenuation_Half_Life_Species_6	days	210 No I	Decay
Attenuation_Decay_Coefficient_Species_6	1/s	3.82E-08	0
Phenanthrene			
Attenuation_Partition_Coefficient_Kd_Species_7	L/kg	209	0
Attenuation_Retardation_Species_7	[-]	4985.65	1
Attenuation_Half_Life_Species_7	days	90 No I	
Attenuation_Decay_Coefficient_Species_7	1/s	8.91E-08	0

WATER BALANCE

Infiltration through the soil zone source Source Name: EDB

Effective_Rainfall	15768	mm/year
Infiltration_Factor	1	[-]
Infiltration_Rate	15768	mm/year
Infiltration_Area	4205	m2

Q_Infiltration

Infiltration rate check

5.0E-07 **m/s**

0.002101061 m3/s

PATHWAY SUMMARY

Path 1		Section 1		Section 2		Section 3	Section 4	
Path 1 Type		Source		Unit		Unit		Receptor
Path 1 Name		EDB		Unsaturated Zone: N	ode 1	Saturated Zone: Node	21	Groundwater
Path 1 Process		Constant source		ADRD (1D)		Aquifer Dilution Only		Monitoring Borehole
Path 1 Standards							Target Standard	EAL
Path 1 Parameter1	Q_managed [m3/s]	0.000E+00	Velocity [m/s]	4.997E-06				
Path 1 Parameter2	Managed time [years]	0.000E+00	Dispersivity [m]	0.4				
Path 1 Parameter3	Q_path [m3/s]	2.101E-03	Travel Distance [m]	3.8				
Path 1 Parameter4	Q_decline [m3/s]	0.000E+00			Mixing Depth [m]	5.0		
Path 1 Parameter5					Mixing Width [m]	150.0		
Path 1 Parameter6			Q_Dilute [m3/s]	0	Q_Dilute [m3/s]	5.700E-05	Q_dilute [m3/s]	0.000E+0

SIMULATION PARAMETERS

nte Carlo Analysis with Crystal Ball	Named Constants
Reported Percentile 95 Number of simulations 10000 Stop on calculation error	s_per_year 31557600 s_per_day 86400
Use same sequence of random numbers	Laplace Transform Solution Parameters
Minimise while running: Nothing 	sigma 0 nu 1
 All Spreadsheets (faster) Microsoft Excel (fastest) 	nsum 16 omega 11

Reporting Options

Include Remedial Targets and Attenuation Factors on the results sheets in Advanced level
 Use the array form of the RAM function

Include a set of timeslices for each contaminant in each pathway


Number of timeslices for breakthrough curves

4

The timeslices specified on the results sheets are saved below.

Path1 timeslices in years

CONTAMINANT INFORMATION

			Species1	Species2	Species3	Species4	Species5	Species6	species/
Source determinand names		 ▼	7 <mark>Copper</mark>	Zinc	Cadmium	Pyrene	Fluoranthe	e Anthracen	<mark>: Phenanthre</mark> ne
Receptor Target Concentrations									
		Name	Values in r	ng/L					
	Quality Standard 1	EAL	2	5	5.00E-03	5.00E-06	5.00E-06	5.00E-05	5.00E-06
	Quality Standard 2								
	Quality Standard 3								
	Quality Standard 4								
	Quality Standard 4								
	Quanty Standard 4								
Generic Contaminant Properties	Quanty Standard +								
Generic Contaminant Properties	Quanty Standard +								
Generic Contaminant Properties Contaminants_Solubility	Quanty Standard 4	mg/L	2.93E+05	6.06E+05	6.51E+05	0.137	2.32E-01	5.37E-02	1.28
Contaminants_Solubility	Quanty Standard +	mg/L	2.93E+05	6.06E+05	6.51E+05	0.137	2.32E-01	5.37E-02	1.28
Contaminants_Solubility			2.93E+05	6.06E+05	6.51E+05	0.137	2.32E-01	5.37E-02	1.28
		mg/L	2.93E+05	6.06E+05	6.51E+05				1.28 2.09E+04

HYDROGEOLOGICAL UNITS

Hydrogeological Units	Unsaturate	Saturated Zo	
Hydrogeology_Unit_Thickness	m	14	5
Hydrogeology_Log_Hydraulic_Conductivity	log(m/s)		
Hydrogeology_Hydraulic_Conductivity	m/s	5.0E-07	1.00E-05
Hydrogeology_Hydraulic_Gradient	[-]	1	0.0076
		0.1	0.01
Hydrogeology_Porosity	[-]	0.1	0.01
Hydrogeology_Velocity	m/s	5E-06	7.6E-06
Hydrogeology_Tortuosity	[-]		

ATTENUATION PARAMETERS

Hydrogeological Units		Unsaturate Satu	urated Zo
General properties			
Attenuation_Dry_bulk_density	kg/m3	2385	
Attenuation_Fraction_organic_carbon	[-]	0.001	
Contaminant specific parameters			
Copper			
Attenuation_Partition_Coefficient_Kd_Species_1	L/kg	13770	0
Attenuation_Retardation_Species_1	[-]	328415.5	1
Attenuation_Half_Life_Species_1	days	No Decay No	Decay
Attenuation_Decay_Coefficient_Species_1	1/s	0	0
Zinc			
Attenuation_Partition_Coefficient_Kd_Species_2	L/kg	301	0
Attenuation_Retardation_Species_2	[-]	7179.85	1
Attenuation_Half_Life_Species_2	days	No Decay No	Decay
Attenuation_Decay_Coefficient_Species_2	1/s	0	0
Cadmium	_,.		0
Attenuation_Partition_Coefficient_Kd_Species_3	L/kg	751	0
		17912.35	1
Attenuation_Retardation_Species_3	[-]		
Attenuation_Half_Life_Species_3	days		Decay
Attenuation_Decay_Coefficient_Species_3	1/s	0	0
Pyrene			
Attenuation_Partition_Coefficient_Kd_Species_4	L/kg	68	0
Attenuation_Retardation_Species_4	[-]	1622.8	1
Attenuation_Half_Life_Species_4	days	1925 No	Decay
Attenuation_Decay_Coefficient_Species_4	1/s	4.17E-09	0
Fluoranthene			
Attenuation_Partition_Coefficient_Kd_Species_5	L/kg	49.1	0
Attenuation_Retardation_Species_5	[-]	1172.035	1
Attenuation_Half_Life_Species_5	days	462 No	Decay
Attenuation_Decay_Coefficient_Species_5	1/s	1.74E-08	0
Anthracene			
Attenuation_Partition_Coefficient_Kd_Species_6	L/kg	23.5	0
Attenuation_Retardation_Species_6	[-]	561.475	1
Attenuation_Half_Life_Species_6	days	365 No	Decay
Attenuation_Decay_Coefficient_Species_6	1/s	2.2E-08	0
Phenanthrene			
Attenuation_Partition_Coefficient_Kd_Species_7	L/kg	20.9	0
Attenuation_Retardation_Species_7	[-]	499.465	1
Attenuation_Half_Life_Species_7	days	730 No	Decay

WATER BALANCE

Infiltration through the soil zone source Source Name: EDB

Effective_Rainfall		mm/year
Infiltration_Factor Infiltration_Rate		[-] mm/year
Infiltration_Area	3933	m2
Q_Infiltration	0.001965154	m3/s
Infiltration rate	5.0E-07	

PATHWAY SUMMARY

Path 1

Path 1 Path 1 Path 1 Path 1 Path 1 Path 1

Path 1

Path 1

Path 1

Path 1

1	Section 1		Section 2		Section 3		Section 4	
1 Туре		Source		Unit		Unit		Receptor
1 Name		EDB		Unsaturated Zone: No	ode 1	Saturated Zone: Node	1	Groundwater
1 Process		Constant source		ADRD (1D)		Aquifer Dilution Only		Monitoring Borehole
1 Standards							Target Standard	EAL
1 Parameter1	Q_managed [m3/s]	0.000E+00	Velocity [m/s]	4.997E-06				
1 Parameter2	Managed time [years]	0.000E+00	Dispersivity [m]	1.4				
1 Parameter3	Q_path [m3/s]	1.965E-03	Travel Distance [m]	14.0				
1 Parameter4	Q_decline [m3/s]	0.000E+00			Mixing Depth [m]	5.0		
1 Parameter5					Mixing Width [m]	60.0		
1 Parameter6			Q_Dilute [m3/s]	0	Q_Dilute [m3/s]	2.280E-05	Q_dilute [m3/s]	0.000E+00

SIMULATION PARAMETERS

Monte Carlo Analysis with Crystal Ball	Named Constants
Reported Percentile95Number of simulations10000Stop on calculation error10000	s_per_year 31557600 s_per_day 86400
Use same sequence of random numbers	Laplace Transform Solution Parameters
Minimise while running: Nothing All Spreadsheets (faster) Microsoft Excel (fastest) 	sigma 0 nu 1 nsum 16 omega 11

Reporting Options

Include Remedial Targets and Attenuation Factors on the results sheets in Advanced level

Use the array form of the RAM function

Include a set of timeslices for each contaminant in each pathway

Number of timeslices for breakthrough curves

The timeslices specified on the results sheets are saved below.

Path1 timeslices in years

TS_Path1

AUDIT TRAIL SHEET

Author Date Time Cell Address New Value Old Value Cell Name

THE AUDIT SHEET WAS WIPED ON 24/08/2021: 11:07:11 By Sears, Rob

Saved 24/08/2021: 11:09:39 Level Number: 2

BREAKTHROUGH RESULTS

Level 2

Pollutant Linkage: EDB, Unsaturated Zone, Saturated Zone, Groundwater Concentrations in mg/L in Groundwater

Compared with	n EAL target cond	centration in mg	/L				
	2.000E+00	5.000E+00	5.000E-03	5.000E-06	5.000E-05	5.000E-05	5.000E-06
Time(years)	Species1	Species2	Species3	Species4	Species5	Species6	Species7
	Copper	Zinc	Cadmium	Pyrene	Fluoranthene	Anthracene	Phenanthrene
0.1	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
1	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
10	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
100	0.000E+00	5.607E-05	2.132E-18	1.202E-21	4.616E-32	6.259E-26	4.661E-17

Pollutant Linkage: EDB, Unsaturated Zone, Saturated Zone, Groundwater Remedial Target Concentrations in mg/kg in EDB

Time(years)	Species1	Species2	Species3	Species4	Species5	Species6	Species7
	Copper	Zinc	Cadmium	Pyrene	Fluoranthene	Anthracene	Phenanthrene
0.1	1.000E+40	1.000E+40	1.000E+40	1.000E+40	1.000E+40	1.000E+40	1.000E+40
1	1.000E+40	1.000E+40	1.000E+40	1.000E+40	1.000E+40	1.000E+40	1.000E+40
10	1.000E+40	1.000E+40	1.000E+40	1.000E+40	1.000E+40	1.000E+40	1.000E+40
100	1.000E+40	1.000E+40	1.000E+40	1.000E+40	1.000E+40	1.000E+40	1.000E+40
Compared with	source concent	rations in mg/kg	5				
	9.680E+02	3.569E+03	2.000E+00	9.729E+00	9.335E+00	5.960E-01	2.632E+00

Pollutant Linkage: EDB, Unsaturated Zone, Saturated Zone, Groundwater Dilution Factor

1.000E+00 for all species and timeslices

Pollutant Linkage: EDB, Unsaturated Zone, Saturated Zone, Groundwater Attenuation Factor

Time(years)	Species1	Species2	Species3	Species4	Species5	Species6	Species7
	Copper	Zinc	Cadmium	Pyrene	Fluoranthene	Anthracene	Phenanthrene
0.1	1.000E+40	1.000E+40	1.000E+40	1.000E+40	1.000E+40	1.000E+40	1.000E+40
1	1.000E+40	1.000E+40	1.000E+40	1.000E+40	1.000E+40	1.000E+40	1.000E+40
10	1.000E+40) 1.000E+40	1.000E+40	1.000E+40	1.000E+40	1.000E+40	1.000E+40
100	1.000E+40) 2.114E+05	1.249E+15	1.190E+19	4.119E+29	4.051E+22	2.701E+14

Saved 24/08/2021: 11:10:19 Level Number: 2

BREAKTHROUGH RESULTS

Level 2 Pollutant Linkage: EDB, Unsaturated Zone, Saturated Zone, Groundwater Concentrations in mg/L in Groundwater

Compared with EAL target concentration in mg/L

	2.000E+00	5.000E+00	5.000E-03	5.000E-06	5.000E-05	5.000E-05	5.000E-06
Time(years)	Species1	Species2	Species3	Species4	Species5	Species6	Species7
	Copper	Zinc	Cadmium	Pyrene	Fluoranthene	Anthracene	Phenanthrene
0.1	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
1	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
10	0.000E+00	4.362E-31	0.000E+00	0.000E+00	0.000E+00	1.421E-30	1.402E-25
100	0.000E+00	9.368E-02	3.054E-10	5.009E-14	8.354E-23	9.705E-19	2.701E-12

Pollutant Linkage: EDB, Unsaturated Zone, Saturated Zone, Groundwater

Remedial Target Concentrations in mg/kg in EDB

Time(years)	Species1	Species2	Species3	Species4	Species5	Species6	Species7
	Copper	Zinc	Cadmium	Pyrene	Fluoranthene	Anthracene	Phenanthrene
0.1	1.000E+40	1.000E+40	1.000E+40	1.000E+40	1.000E+40	1.000E+40	1.000E+40
1	1.000E+40	1.000E+40	1.000E+40	1.000E+40	1.000E+40	1.000E+40	1.000E+40
10	1.000E+40	1.000E+40	1.000E+40	1.000E+40	1.000E+40	1.000E+40	1.000E+40
100	1.000E+40	1.905E+05	3.274E+07	1.000E+40	1.000E+40	1.000E+40	1.000E+40
Compared with	n source concent	rations in mg/kg	3				

9.680E+02	3.569E+03	2.000E+00	9.729E+00	9.335E+00	5.960E-01	2.632E+00

Pollutant Linkage: EDB, Unsaturated Zone, Saturated Zone, Groundwater Dilution Factor

1.000E+00 for all species and timeslices

Pollutant Linkage: EDB, Unsaturated Zone, Saturated Zone, Groundwater Attenuation Factor

Time(years)	Species1 Copper	Species2 Zinc	Species3 Cadmium	Species4 Pyrene	Species5 Fluoranthene	Species6 Anthracene	Species7 Phenanthrene
0.1	1.000E+40	1.000E+40	1.000E+40	1.000E+40	1.000E+40	1.000E+40	1.000E+40
1	1.000E+40	1.000E+40	1.000E+40	1.000E+40	1.000E+40	1.000E+40	1.000E+40
10	1.000E+40	2.718E+31	1.000E+40	1.000E+40	1.000E+40	1.785E+27	8.977E+22
100	1.000E+40	1.265E+02	8.719E+06	2.856E+11	2.276E+20	2.613E+15	4.662E+09

Saved 24/08/2021: 11:11:08 Level Number: 2

BREAKTHROUGH RESULTS

Level 2 Pollutant Linkage: EDB, Unsaturated Zone, Saturated Zone, Groundwater Concentrations in mg/L in Groundwater

Compared with EAL target concentration in mg/L

	2.000E+00	5.000E+00	5.000E-03	5.000E-06	5.000E-05	5.000E-05	5.000E-06
Time(years)	Species1	Species2	Species3	Species4	Species5	Species6	Species7
	Copper	Zinc	Cadmium	Pyrene	Fluoranthene	Anthracene	Phenanthrene
0.1	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
1	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
10	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
100	0.000E+00	5.607E-05	2.132E-18	1.202E-21	4.616E-32	6.259E-26	4.661E-17

Pollutant Linkage: EDB, Unsaturated Zone, Saturated Zone, Groundwater

Remedial Target Concentrations in mg/kg in EDB

Time(years)	Species1 Copper	Species2 Zinc	Species3 Cadmium	Species4 Pyrene	Species5 Fluoranthene	Species6 Anthracene	Species7 Phenanthrene
0.1	1.000E+40	1.000E+40	1.000E+40	1.000E+40	1.000E+40	1.000E+40	1.000E+40
1	1.000E+40	1.000E+40	1.000E+40	1.000E+40	1.000E+40	1.000E+40	1.000E+40

10	1.000E+40						
100	1.000E+40						

Compared with source concentrations in mg/kg										
	9.680E+02	3.569E+03	2.000E+00	9.729E+00	9.335E+00	5.960E-01	2.632E+00			

Pollutant Linkage: EDB, Unsaturated Zone, Saturated Zone, Groundwater Dilution Factor

1.000E+00 for all species and timeslices

Pollutant Linkage: EDB, Unsaturated Zone, Saturated Zone, Groundwater Attenuation Factor

Time(years)	Species1	Species2	Species3	Species4	Species5	Species6	Species7
	Copper	Zinc	Cadmium	Pyrene	Fluoranthene	Anthracene	Phenanthrene
0.1	L 1.000E+40) 1.000E+40	1.000E+40	1.000E+40	1.000E+40	1.000E+40	1.000E+40
1	L 1.000E+40) 1.000E+40	1.000E+40	1.000E+40	1.000E+40	1.000E+40	1.000E+40
10	1.000E+40) 1.000E+40	1.000E+40	1.000E+40	1.000E+40	1.000E+40	1.000E+40
100	1.000E+40) 2.114E+05	1.249E+15	1.190E+19	4.119E+29	4.051E+22	2.701E+14

Saved 04/07/2023: 12:03:21 Level Number: 2

BREAKTHROUGH RESULTS

Level 2

Pollutant Linkage: EDB, Unsaturated Zone, Saturated Zone, Groundwater Concentrations in mg/L in Groundwater

Compared with EAL target concentration in mg/L

	2.000E+00	5.000E+00	5.000E-03	5.000E-06	5.000E-06	5.000E-05	5.000E-06
Time(years)	Species1	Species2	Species3	Species4	Species5	Species6	Species7
	Copper	Zinc	Cadmium	Pyrene	Fluoranthene	Anthracene	Phenanthrene
0.1	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
1	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
10	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
100	0.000E+00	1.160E-06	7.086E-21	3.290E-24	1.150E-34	2.698E-28	3.822E-19

Pollutant Linkage: EDB, Unsaturated Zone, Saturated Zone, Groundwater Remedial Target Concentrations in mg/kg in EDB

Time(years)	Species1 Copper	Species2 Zinc	Species3 Cadmium	Species4 Pyrene	Species5 Fluoranthene	Species6 Anthracene	Species7 Phenanthrene
0.1	1.000E+40	1.000E+40	1.000E+40	1.000E+40	1.000E+40	1.000E+40	1.000E+40
1	1.000E+40	1.000E+40	1.000E+40	1.000E+40	1.000E+40	1.000E+40	1.000E+40
10	1.000E+40	1.000E+40	1.000E+40	1.000E+40	1.000E+40	1.000E+40	1.000E+40
100	1.000E+40	1.000E+40	1.000E+40	1.000E+40	1.000E+40	1.000E+40	1.000E+40
Compared with	n source concent	trations in mg/kg	3				

compared with	Source concentration	lions in mg/ kg					
	5.473E+01	2.073E+02	8.756E-02	2.840E-01	2.725E-01	1.740E-02	7.682E-02

Pollutant Linkage: EDB, Unsaturated Zone, Saturated Zone, Groundwater Dilution Factor

1.000E+00 for all species and timeslices

Pollutant Linkage: EDB, Unsaturated Zone, Saturated Zone, Groundwater Attenuation Factor

Time(years)	Species1	Species2	Species3	Species4	Species5	Species6	Species7
	Copper	Zinc	Cadmium	Pyrene	Fluoranthene	Anthracene	Phenanthrene
0.1	1.000E+40	1.000E+40	1.000E+40	1.000E+40	1.000E+40	1.000E+40	1.000E+40
1	1.000E+40	1.000E+40	1.000E+40	1.000E+40	1.000E+40	1.000E+40	1.000E+40
10	1.000E+40	1.000E+40	1.000E+40	1.000E+40	1.000E+40	1.000E+40	1.000E+40
100	1.000E+40	5.933E+05	1.645E+16	1.269E+20	4.827E+30	2.743E+23	9.615E+14

Saved 04/07/2023: 12:05:12 Level Number: 2

BREAKTHROUGH RESULTS

Level 2

Pollutant Linkage: EDB, Unsaturated Zone, Saturated Zone, Groundwater Concentrations in mg/L in Groundwater

Compared with EAL target concentration in mg/L

	2.000E+00	5.000E+00	5.000E-03	5.000E-06	5.000E-06	5.000E-05	5.000E-06
Time(years)	Species1 Copper	Species2 Zinc	Species3 Cadmium	Species4 Pyrene	Species5 Fluoranthene		Species7 Phenanthrene
0.1	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
1	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
10	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
100	0.000E+00	1.144E-06	6.989E-21	3.245E-24	1.134E-34	2.661E-28	3.769E-19

Pollutant Linkage: EDB, Unsaturated Zone, Saturated Zone, Groundwater Remedial Target Concentrations in mg/kg in EDB

Time(years)	Species1	Species2	Species3	Species4	Species5	Species6	Species7
	Copper	Zinc	Cadmium	Pyrene	Fluoranthene	Anthracene	Phenanthrene
0.1	1.000E+40	1.000E+40	1.000E+40	1.000E+40	1.000E+40	1.000E+40	1.000E+40
1	1.000E+40	1.000E+40	1.000E+40	1.000E+40	1.000E+40	1.000E+40	1.000E+40
10	1.000E+40	1.000E+40	1.000E+40	1.000E+40	1.000E+40	1.000E+40	1.000E+40
100	1.000E+40	1.000E+40	1.000E+40	1.000E+40	1.000E+40	1.000E+40	1.000E+40

Compared with source concentrations in mg/kg

5.473E+01 2.073E+02 8.756E-02 2.840E-01 2.725E-01 1.740E-02 7.682E-02

Pollutant Linkage: EDB, Unsaturated Zone, Saturated Zone, Groundwater Dilution Factor

1.014E+00 for all species and timeslices

Pollutant Linkage: EDB, Unsaturated Zone, Saturated Zone, Groundwater Attenuation Factor

Time(years)	Species1	Species2	Species3	Species4	Species5	Species6	Species7
	Copper	Zinc	Cadmium	Pyrene	Fluoranthene	Anthracene	Phenanthrene
0.1	L 1.000E+40	1.000E+40	1.000E+40	1.000E+40	1.000E+40	1.000E+40	1.000E+40
1	L 1.000E+40	1.000E+40	1.000E+40	1.000E+40	1.000E+40	1.000E+40	1.000E+40
10	1.000E+40	1.000E+40	1.000E+40	1.000E+40	1.000E+40	1.000E+40	1.000E+40
100	1.000E+40	5.933E+05	1.645E+16	1.269E+20	4.827E+30	2.743E+23	9.615E+14

Saved 25/07/2023: 14:10:13 Level Number: 2

BREAKTHROUGH RESULTS

Level 2 Pollutant Linkage: EDB, Unsaturated Zone, Saturated Zone, Groundwater Concentrations in mg/L in Groundwater

Compared with EAL target concentration in mg/L										
	2.000E+00	5.000E+00	5.000E-03	5.000E-06	5.000E-06	5.000E-05	5.000E-06			
Time(years)	Species1	Species2	Species3	Species4	Species5	Species6	Species7			
	Copper	Zinc	Cadmium	Pyrene	Fluoranthene	Anthracene	Phenanthrene			
0.1	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00			
1	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00			
10	0.000E+00	0.000E+00	0.000E+00	3.029E-19	1.819E-16	7.132E-12	3.350E-09			
100	0.000E+00	1.147E-06	7.005E-21	2.666E-08	2.065E-12	4.711E-11	8.404E-08			

Pollutant Linkage: EDB, Unsaturated Zone, Saturated Zone, Groundwater Remedial Target Concentrations in mg/kg in EDB

Time(years)	Species1 Copper	Species2 Zinc	Species3 Cadmium	Species4 Pyrene	Species5 Fluoranthene	Species6 Anthracene	Species7 Phenanthrene
0.1	1.000E+40	1.000E+40	1.000E+40	1.000E+40	1.000E+40	1.000E+40	1.000E+40
1	1.000E+40	1.000E+40	1.000E+40	1.000E+40	1.000E+40	1.000E+40	1.000E+40
10	1.000E+40	1.000E+40	1.000E+40	1.000E+40	1.000E+40	1.000E+40	1.147E+02
100	1.000E+40	1.000E+40	1.000E+40	5.325E+01	1.000E+40	1.000E+40	4.570E+00
Compared with	n source concent	trations in mg/kg	B				
	5.473E+01	2.073E+02	8.756E-02	2.840E-01	2.725E-01	1.740E-02	7.682E-02

Pollutant Linkage: EDB, Unsaturated Zone, Saturated Zone, Groundwater Dilution Factor

1.012E+00 for all species and timeslices

Pollutant Linkage: EDB, Unsaturated Zone, Saturated Zone, Groundwater Attenuation Factor

Time(years)	Species1	Species2	Species3	Species4	Species5	Species6	Species7
	Copper	Zinc	Cadmium	Pyrene	Fluoranthene	Anthracene	Phenanthrene
0.1	1.000E+40	1.000E+40	1.000E+40	1.000E+40	1.000E+40	1.000E+40	1.000E+40
1	1.000E+40	1.000E+40	1.000E+40	1.000E+40	1.000E+40	1.000E+40	1.000E+40
10	1.000E+40	1.000E+40	1.000E+40	1.363E+15	3.015E+12	1.026E+07	1.084E+05
100	1.000E+40) 5.933E+05	1.645E+16	1.548E+04	2.657E+08	1.553E+06	4.322E+03

Saved 25/07/2023: 14:11:25 Level Number: 2

BREAKTHROUGH RESULTS

Level 2

Pollutant Linkage: EDB, Unsaturated Zone, Saturated Zone, Groundwater Concentrations in mg/L in Groundwater

Compared with EAL target concentration in mg/L

	2.000E+00	5.000E+00	5.000E-03	5.000E-06	5.000E-06	5.000E-05	5.000E-06
Time(years)	Species1	Species2	Species3	Species4	Species5	Species6	Species7
	Copper	Zinc	Cadmium	Pyrene	Fluoranthene	Anthracene	Phenanthrene
0.1	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
1	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
10	0.000E+00	0.000E+00	0.000E+00	3.029E-19	1.819E-16	7.132E-12	3.350E-09
100	0.000E+00	1.147E-06	7.005E-21	2.666E-08	2.065E-12	4.711E-11	8.404E-08

Pollutant Linkage: EDB, Unsaturated Zone, Saturated Zone, Groundwater Remedial Target Concentrations in mg/kg in EDB

Time(years)	Species1	Species2	Species3	Species4	Species5	Species6	Species7
	Copper	Zinc	Cadmium	Pyrene	Fluoranthene	Anthracene	Phenanthrene
0.1	L 1.000E+40) 1.000E+40	1.000E+40	1.000E+40	1.000E+40	1.000E+40	1.000E+40

1	1.000E+40	1.000E+40	1.000E+40	1.000E+40	1.000E+40	1.000E+40	1.000E+40
10	1.000E+40	1.000E+40	1.000E+40	1.000E+40	1.000E+40	1.000E+40	1.147E+02
100	1.000E+40	1.000E+40	1.000E+40	5.325E+01	1.000E+40	1.000E+40	4.570E+00
Compared with	source concentrat	tions in mg/kg					
	5.473E+01	2.073E+02	8.756E-02	2.840E-01	2.725E-01	1.740E-02	7.682E-02

Pollutant Linkage: EDB, Unsaturated Zone, Saturated Zone, Groundwater Dilution Factor

1.012E+00 for all species and timeslices

Pollutant Linkage: EDB, Unsaturated Zone, Saturated Zone, Groundwater Attenuation Factor

Time(years)	Species1	Species2	Species3	Species4	Species5	Species6	Species7
	Copper	Zinc	Cadmium	Pyrene	Fluoranthene	Anthracene	Phenanthrene
0.1	1.000E+40	1.000E+40	1.000E+40	1.000E+40	1.000E+40	1.000E+40	1.000E+40
1	1.000E+40	1.000E+40	1.000E+40	1.000E+40	1.000E+40	1.000E+40	1.000E+40
10	1.000E+40	1.000E+40	1.000E+40	1.363E+15	3.015E+12	1.026E+07	1.084E+05
100	1.000E+40	5.933E+05	1.645E+16	1.548E+04	2.657E+08	1.553E+06	4.322E+03

Saved 26/07/2023: 14:47:19 Level Number: 2

BREAKTHROUGH RESULTS

Level 2

Pollutant Linkage: EDB, Unsaturated Zone, Saturated Zone, Groundwater Concentrations in mg/L in Groundwater

	Compared with	EAL target conc	centration in mg	/1				
compared with		2.000E+00			5.000E-06	5.000E-06	5.000E-05	5.000E-06
		2.000E+00	5.000E+00	5.000E-03	5.000E-00	5.000E-00	5.000E-05	5.000E-00
	Time(years)	Species1	Species2	Species3	Species4	Species5	Species6	Species7
		Copper	Zinc	Cadmium	Pyrene	Fluoranthene	Anthracene	Phenanthrene
	0.1	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
	1	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
	10	0.000E+00	0.000E+00	0.000E+00	3.029E-19	1.819E-16	7.132E-12	3.350E-09
	200	0.000E+00	3.267E-03	3.639E-12	2.671E-08	2.065E-12	4.711E-11	8.404E-08
	1000	7.708F-34	6.090F-01	2.256E-05	2.671E-08	2.065E-12	4.711F-11	8.404F-08

Pollutant Linkage: EDB, Unsaturated Zone, Saturated Zone, Groundwater Remedial Target Concentrations in mg/kg in EDB

Time(years)	Species1 Copper	Species2 Zinc	Species3 Cadmium	Species4 Pyrene	Species5 Fluoranthene	Species6 Anthracene	Species7 Phenanthrene		
0.1	1.000E+40	1.000E+40	1.000E+40	1.000E+40	1.000E+40	1.000E+40	1.000E+40		
1	1.000E+40	1.000E+40	1.000E+40	1.000E+40	1.000E+40	1.000E+40	1.000E+40		
10	1.000E+40	1.000E+40	1.000E+40	1.000E+40	1.000E+40	1.000E+40	1.147E+02		
200	1.000E+40	3.172E+05	1.203E+08	5.316E+01	1.000E+40	1.000E+40	4.570E+00		
1000	1.000E+40	1.702E+03	1.941E+01	5.316E+01	1.000E+40	1.000E+40	4.570E+00		
Compared with source concentrations in mg/kg									
	5.473E+01	2.073E+02	8.756E-02	2.840E-01	2.725E-01	1.740E-02	7.682E-02		


Pollutant Linkage: EDB, Unsaturated Zone, Saturated Zone, Groundwater Dilution Factor

1.012E+00 for all species and timeslices

Pollutant Linkage: EDB, Unsaturated Zone, Saturated Zone, Groundwater

Attenuation Factor

Time(years)	Species1	Species2	Species3	Species4	Species5	Species6	Species7
	Copper	Zinc	Cadmium	Pyrene	Fluoranthene	Anthracene	Phenanthrene
0.1	L 1.000E+40	1.000E+40	1.000E+40	1.000E+40	1.000E+40	1.000E+40	1.000E+40
1	L 1.000E+40	1.000E+40	1.000E+40	1.000E+40	1.000E+40	1.000E+40	1.000E+40
10	1.000E+40	1.000E+40	1.000E+40	1.363E+15	3.015E+12	1.026E+07	1.084E+05
200	1.000E+40	2.083E+02	3.167E+07	1.546E+04	2.657E+08	1.553E+06	4.322E+03
1000	5.097E+30	1.118E+00	5.110E+00	1.546E+04	2.657E+08	1.553E+06	4.322E+03

CONTAMINANT INFORMATION

			Species1	Species2	Species3	Species4	Species5	Species6	species/
Source determinand names		 ▼	7 <mark>Copper</mark>	Zinc	Cadmium	Pyrene	Fluoranthe	e Anthracen	<mark>: Phenanthre</mark> ne
Receptor Target Concentrations									
		Name	Values in r	ng/L					
	Quality Standard 1	EAL	2	5	5.00E-03	5.00E-06	5.00E-06	5.00E-05	5.00E-06
	Quality Standard 2								
	Quality Standard 3								
	Quality Standard 4								
	Quality Standard 4								
	Quanty Standard 4								
Generic Contaminant Properties	Quanty Standard +								
Generic Contaminant Properties	Quanty Standard +								
Generic Contaminant Properties Contaminants_Solubility	Quanty Standard 4	mg/L	2.93E+05	6.06E+05	6.51E+05	0.137	2.32E-01	5.37E-02	1.28
Contaminants_Solubility	Quanty Standard +	mg/L	2.93E+05	6.06E+05	6.51E+05	0.137	2.32E-01	5.37E-02	1.28
Contaminants_Solubility			2.93E+05	6.06E+05	6.51E+05	0.137	2.32E-01	5.37E-02	1.28
		mg/L	2.93E+05	6.06E+05	6.51E+05				1.28 2.09E+04

HYDROGEOLOGICAL UNITS

Hydrogeological Units	Unsaturate Saturated Zor		
Hydrogeology_Unit_Thickness	m	14	5
Hydrogeology_Log_Hydraulic_Conductivity	log(m/s)		
Hydrogeology_Hydraulic_Conductivity	m/s	5.0E-07	1.00E-05
Hydrogeology_Hydraulic_Gradient	[-]	1	0.0076
		0.1	0.01
Hydrogeology_Porosity	[-]	0.1	0.01
Hydrogeology_Velocity	m/s	5E-06	7.6E-06
Hydrogeology_Tortuosity	[-]		

ATTENUATION PARAMETERS

Hydrogeological Units		Unsaturate Satu	urated Zo
General properties			
Attenuation_Dry_bulk_density	kg/m3	2385	
Attenuation_Fraction_organic_carbon	[-]	0.001	
Contaminant specific parameters			
Copper			
Attenuation_Partition_Coefficient_Kd_Species_1	L/kg	13770	0
Attenuation_Retardation_Species_1	[-]	328415.5	1
Attenuation_Half_Life_Species_1	days	No Decay No	Decay
Attenuation_Decay_Coefficient_Species_1	1/s	0	0
Zinc			
Attenuation_Partition_Coefficient_Kd_Species_2	L/kg	301	0
Attenuation_Retardation_Species_2	[-]	7179.85	1
Attenuation_Half_Life_Species_2	days	No Decay No	Decay
Attenuation_Decay_Coefficient_Species_2	1/s	0	0
Cadmium	_,.		0
Attenuation_Partition_Coefficient_Kd_Species_3	L/kg	751	0
		17912.35	1
Attenuation_Retardation_Species_3	[-]		
Attenuation_Half_Life_Species_3	days		Decay
Attenuation_Decay_Coefficient_Species_3	1/s	0	0
Pyrene			
Attenuation_Partition_Coefficient_Kd_Species_4	L/kg	68	0
Attenuation_Retardation_Species_4	[-]	1622.8	1
Attenuation_Half_Life_Species_4	days	1925 No	Decay
Attenuation_Decay_Coefficient_Species_4	1/s	4.17E-09	0
Fluoranthene			
Attenuation_Partition_Coefficient_Kd_Species_5	L/kg	49.1	0
Attenuation_Retardation_Species_5	[-]	1172.035	1
Attenuation_Half_Life_Species_5	days	462 No	Decay
Attenuation_Decay_Coefficient_Species_5	1/s	1.74E-08	0
Anthracene			
Attenuation_Partition_Coefficient_Kd_Species_6	L/kg	23.5	0
Attenuation_Retardation_Species_6	[-]	561.475	1
Attenuation_Half_Life_Species_6	days	365 No	Decay
Attenuation_Decay_Coefficient_Species_6	1/s	2.2E-08	0
Phenanthrene			
Attenuation_Partition_Coefficient_Kd_Species_7	L/kg	20.9	0
Attenuation_Retardation_Species_7	[-]	499.465	1
Attenuation_Half_Life_Species_7	days	730 No	Decay

WATER BALANCE

Infiltration through the soil zone source Source Name: EDB

Effective_Rainfall		mm/year
Infiltration_Factor Infiltration_Rate		[-] mm/year
Infiltration_Area	3933	m2
Q_Infiltration	0.001965154	m3/s
Infiltration rate	5.0E-07	

PATHWAY SUMMARY

Path 1

Path 1 Path 1 Path 1 Path 1 Path 1 Path 1

Path 1	Parameterz
Path 1	Parameter3

Path 1

Path 1

Path 1

1	Section 1		Section 2		Section 3		Section 4	
Туре		Source		Unit		Unit		Receptor
Name		EDB		Unsaturated Zone: No	ode 1	Saturated Zone: Node	1	Groundwater
Process	1	Constant source		ADRD (1D)		Aquifer Dilution Only		Monitoring Borehole
Standards							Target Standard	EAL
Parameter1	Q_managed [m3/s]	0.000E+00	Velocity [m/s]	4.997E-06				
Parameter2	Managed time [years]	0.000E+00	Dispersivity [m]	1.4				
Parameter3	Q_path [m3/s]	1.965E-03	Travel Distance [m]	14.0				
Parameter4	Q_decline [m3/s]	0.000E+00			Mixing Depth [m]			
Parameter5					Mixing Width [m]			
Parameter6			Q_Dilute [m3/s]	0	Q_Dilute [m3/s]	0.000E+00	Q_dilute [m3/s]	0.000E+00

SIMULATION PARAMETERS

Monte Carlo Analysis with Crystal Ball	Named Constants
Reported Percentile95Number of simulations10000Stop on calculation error10000	s_per_year 31557600 s_per_day 86400
Use same sequence of random numbers	Laplace Transform Solution Parameters
Minimise while running: Nothing All Spreadsheets (faster) Microsoft Excel (fastest) 	sigma 0 nu 1 nsum 16 omega 11

Reporting Options

Include Remedial Targets and Attenuation Factors on the results sheets in Advanced level

Use the array form of the RAM function

Include a set of timeslices for each contaminant in each pathway

Number of timeslices for breakthrough curves

The timeslices specified on the results sheets are saved below.

Path1 timeslices in years

TS_Path1

AUDIT TRAIL SHEET

Author Date Time Cell Address New Value Old Value Cell Name

THE AUDIT SHEET WAS WIPED ON 24/08/2021: 11:07:11 By Sears, Rob

Saved 24/08/2021: 11:09:39 Level Number: 2

BREAKTHROUGH RESULTS

Level 2

Pollutant Linkage: EDB, Unsaturated Zone, Saturated Zone, Groundwater Concentrations in mg/L in Groundwater

Compared with EAL target concentration in mg/L										
	2.000E+00	5.000E+00	5.000E-03	5.000E-06	5.000E-05	5.000E-05	5.000E-06			
Time(years)	Species1	Species2	Species3	Species4	Species5	Species6	Species7			
	Copper	Zinc	Cadmium	Pyrene	Fluoranthene	Anthracene	Phenanthrene			
0.1	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00			
1	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00			
10	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00			
100	0.000E+00	5.607E-05	2.132E-18	1.202E-21	4.616E-32	6.259E-26	4.661E-17			

Pollutant Linkage: EDB, Unsaturated Zone, Saturated Zone, Groundwater Remedial Target Concentrations in mg/kg in EDB

Time(years)	Species1	Species2	Species3	Species4	Species5	Species6	Species7
	Copper	Zinc	Cadmium	Pyrene	Fluoranthene	Anthracene	Phenanthrene
0.1	1.000E+40	1.000E+40	1.000E+40	1.000E+40	1.000E+40	1.000E+40	1.000E+40
1	1.000E+40	1.000E+40	1.000E+40	1.000E+40	1.000E+40	1.000E+40	1.000E+40
10	1.000E+40	1.000E+40	1.000E+40	1.000E+40	1.000E+40	1.000E+40	1.000E+40
100	1.000E+40	1.000E+40	1.000E+40	1.000E+40	1.000E+40	1.000E+40	1.000E+40
Compared with	source concent	rations in mg/kg	5				
	9.680E+02	3.569E+03	2.000E+00	9.729E+00	9.335E+00	5.960E-01	2.632E+00

Pollutant Linkage: EDB, Unsaturated Zone, Saturated Zone, Groundwater Dilution Factor

1.000E+00 for all species and timeslices

Pollutant Linkage: EDB, Unsaturated Zone, Saturated Zone, Groundwater Attenuation Factor

Time(years)	Species1	Species2	Species3	Species4	Species5	Species6	Species7
	Copper	Zinc	Cadmium	Pyrene	Fluoranthene	Anthracene	Phenanthrene
0.1	1.000E+40	1.000E+40	1.000E+40	1.000E+40	1.000E+40	1.000E+40	1.000E+40
1	1.000E+40) 1.000E+40	1.000E+40	1.000E+40	1.000E+40	1.000E+40	1.000E+40
10	1.000E+40) 1.000E+40	1.000E+40	1.000E+40	1.000E+40	1.000E+40	1.000E+40
100	1.000E+40) 2.114E+05	1.249E+15	1.190E+19	4.119E+29	4.051E+22	2.701E+14

Saved 24/08/2021: 11:10:19 Level Number: 2

BREAKTHROUGH RESULTS

Level 2 Pollutant Linkage: EDB, Unsaturated Zone, Saturated Zone, Groundwater Concentrations in mg/L in Groundwater

Compared with EAL target concentration in mg/L

	2.000E+00	5.000E+00	5.000E-03	5.000E-06	5.000E-05	5.000E-05	5.000E-06
Time(years)	Species1	Species2	Species3	Species4	Species5	Species6	Species7
	Copper	Zinc	Cadmium	Pyrene	Fluoranthene	Anthracene	Phenanthrene
0.1	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
1	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
10	0.000E+00	4.362E-31	0.000E+00	0.000E+00	0.000E+00	1.421E-30	1.402E-25
100	0.000E+00	9.368E-02	3.054E-10	5.009E-14	8.354E-23	9.705E-19	2.701E-12

Pollutant Linkage: EDB, Unsaturated Zone, Saturated Zone, Groundwater

Remedial Target Concentrations in mg/kg in EDB

Time(years)	Species1 Copper	Species2 Zinc	Species3 Cadmium	Species4 Pyrene	Species5 Fluoranthene	Species6 Anthracene	Species7 Phenanthrene
0.:	L 1.000E+40) 1.000E+40	1.000E+40	1.000E+40	1.000E+40	1.000E+40	1.000E+40
:	L 1.000E+40) 1.000E+40	1.000E+40	1.000E+40	1.000E+40	1.000E+40	1.000E+40
10	1.000E+40	1.000E+40	1.000E+40	1.000E+40	1.000E+40	1.000E+40	1.000E+40
10	1.000E+40) 1.905E+05	3.274E+07	1.000E+40	1.000E+40	1.000E+40	1.000E+40
Compared wit	h source concent	trations in mg/k	g				

9.680E+02	3.569E+03	2.000E+00	9.729E+00	9.335E+00	5.960E-01	2.632E+00

Pollutant Linkage: EDB, Unsaturated Zone, Saturated Zone, Groundwater Dilution Factor

1.000E+00 for all species and timeslices

Pollutant Linkage: EDB, Unsaturated Zone, Saturated Zone, Groundwater Attenuation Factor

Time(years)	Species1 Copper	Species2 Zinc	Species3 Cadmium	Species4 Pyrene	Species5 Fluoranthene	Species6 Anthracene	Species7 Phenanthrene
0.1	1.000E+40	1.000E+40	1.000E+40	1.000E+40	1.000E+40	1.000E+40	1.000E+40
1	1.000E+40	1.000E+40	1.000E+40	1.000E+40	1.000E+40	1.000E+40	1.000E+40
10	1.000E+40	2.718E+31	1.000E+40	1.000E+40	1.000E+40	1.785E+27	8.977E+22
100	1.000E+40	1.265E+02	8.719E+06	2.856E+11	2.276E+20	2.613E+15	4.662E+09

Saved 24/08/2021: 11:11:08 Level Number: 2

BREAKTHROUGH RESULTS

Level 2 Pollutant Linkage: EDB, Unsaturated Zone, Saturated Zone, Groundwater Concentrations in mg/L in Groundwater

Compared with EAL target concentration in mg/L

	2.000E+00	5.000E+00	5.000E-03	5.000E-06	5.000E-05	5.000E-05	5.000E-06
Time(years)	Species1	Species2	Species3	Species4	Species5	Species6	Species7
	Copper	Zinc	Cadmium	Pyrene	Fluoranthene	Anthracene	Phenanthrene
0.1	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
1	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
10	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
100	0.000E+00	5.607E-05	2.132E-18	1.202E-21	4.616E-32	6.259E-26	4.661E-17

Pollutant Linkage: EDB, Unsaturated Zone, Saturated Zone, Groundwater

Remedial Target Concentrations in mg/kg in EDB

Time(years)	Species1 Copper	Species2 Zinc	Species3 Cadmium	Species4 Pyrene	Species5 Fluoranthene	Species6 Anthracene	Species7 Phenanthrene
0.1	1.000E+40	1.000E+40	1.000E+40	1.000E+40	1.000E+40	1.000E+40	1.000E+40
1	1.000E+40	1.000E+40	1.000E+40	1.000E+40	1.000E+40	1.000E+40	1.000E+40

10	1.000E+40						
100	1.000E+40						

Compared with source concentrations in mg/kg										
	9.680E+02	3.569E+03	2.000E+00	9.729E+00	9.335E+00	5.960E-01	2.632E+00			

Pollutant Linkage: EDB, Unsaturated Zone, Saturated Zone, Groundwater Dilution Factor

1.000E+00 for all species and timeslices

Pollutant Linkage: EDB, Unsaturated Zone, Saturated Zone, Groundwater Attenuation Factor

Time(years)	Species1	Species2	Species3	Species4	Species5	Species6	Species7
	Copper	Zinc	Cadmium	Pyrene	Fluoranthene	Anthracene	Phenanthrene
0.1	L 1.000E+40) 1.000E+40	1.000E+40	1.000E+40	1.000E+40	1.000E+40	1.000E+40
1	L 1.000E+40) 1.000E+40	1.000E+40	1.000E+40	1.000E+40	1.000E+40	1.000E+40
10	1.000E+40) 1.000E+40	1.000E+40	1.000E+40	1.000E+40	1.000E+40	1.000E+40
100	1.000E+40) 2.114E+05	1.249E+15	1.190E+19	4.119E+29	4.051E+22	2.701E+14

Saved 04/07/2023: 12:03:21 Level Number: 2

BREAKTHROUGH RESULTS

Level 2

Pollutant Linkage: EDB, Unsaturated Zone, Saturated Zone, Groundwater Concentrations in mg/L in Groundwater

Compared with EAL target concentration in mg/L

	2.000E+00	5.000E+00	5.000E-03	5.000E-06	5.000E-06	5.000E-05	5.000E-06
Time(years)	Species1	Species2	Species3	Species4	Species5	Species6	Species7
	Copper	Zinc	Cadmium	Pyrene	Fluoranthene	Anthracene	Phenanthrene
0.1	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
1	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
10	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
100	0.000E+00	1.160E-06	7.086E-21	3.290E-24	1.150E-34	2.698E-28	3.822E-19

Pollutant Linkage: EDB, Unsaturated Zone, Saturated Zone, Groundwater Remedial Target Concentrations in mg/kg in EDB

Time(years)	Species1 Copper	Species2 Zinc	Species3 Cadmium	Species4 Pyrene	Species5 Fluoranthene	Species6 Anthracene	Species7 Phenanthrene				
0.1	1.000E+40	1.000E+40	1.000E+40	1.000E+40	1.000E+40	1.000E+40	1.000E+40				
1	1.000E+40	1.000E+40	1.000E+40	1.000E+40	1.000E+40	1.000E+40	1.000E+40				
10	1.000E+40	1.000E+40	1.000E+40	1.000E+40	1.000E+40	1.000E+40	1.000E+40				
100	1.000E+40	1.000E+40	1.000E+40	1.000E+40	1.000E+40	1.000E+40	1.000E+40				
Compared with	Compared with source concentrations in mg/kg										

compared with	Source concentrat	LIONS IN Mg/ Kg					
	5.473E+01	2.073E+02	8.756E-02	2.840E-01	2.725E-01	1.740E-02	7.682E-02

Pollutant Linkage: EDB, Unsaturated Zone, Saturated Zone, Groundwater Dilution Factor

1.000E+00 for all species and timeslices

Pollutant Linkage: EDB, Unsaturated Zone, Saturated Zone, Groundwater Attenuation Factor

Time(years)	Species1	Species2	Species3	Species4	Species5	Species6	Species7
	Copper	Zinc	Cadmium	Pyrene	Fluoranthene	Anthracene	Phenanthrene
0.1	1.000E+40	1.000E+40	1.000E+40	1.000E+40	1.000E+40	1.000E+40	1.000E+40
1	1.000E+40	1.000E+40	1.000E+40	1.000E+40	1.000E+40	1.000E+40	1.000E+40
10	1.000E+40	1.000E+40	1.000E+40	1.000E+40	1.000E+40	1.000E+40	1.000E+40
100	1.000E+40	5.933E+05	1.645E+16	1.269E+20	4.827E+30	2.743E+23	9.615E+14

Saved 25/07/2023: 14:07:53 Level Number: 2

BREAKTHROUGH RESULTS

Level 2

Pollutant Linkage: EDB, Unsaturated Zone, Saturated Zone, Groundwater Concentrations in mg/L in Groundwater

Compared with EAL target concentration in mg/L

	2.000E+00	5.000E+00	5.000E-03	5.000E-06	5.000E-06	5.000E-05	5.000E-06
Time(years)	Species1 Copper	Species2 Zinc	Species3 Cadmium	Species4 Pyrene	Species5 Fluoranthene	Species6 Anthracene	Species7 Phenanthrene
0.1		-		,		0.000E+00	
1	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
10	0.000E+00	0.000E+00	0.000E+00	3.064E-19	1.840E-16	7.215E-12	3.389E-09
100	0.000E+00	1.160E-06	7.086E-21	2.697E-08	2.089E-12	4.765E-11	8.502E-08

Pollutant Linkage: EDB, Unsaturated Zone, Saturated Zone, Groundwater Remedial Target Concentrations in mg/kg in EDB

Species1	Species2	Species3	Species4	Species5	Species6	Species7
Copper	Zinc	Cadmium	Pyrene	Fluoranthene	Anthracene	Phenanthrene
1.000E+40	1.000E+40	1.000E+40	1.000E+40	1.000E+40	1.000E+40	1.000E+40
1.000E+40	1.000E+40	1.000E+40	1.000E+40	1.000E+40	1.000E+40	1.000E+40
1.000E+40	1.000E+40	1.000E+40	1.000E+40	1.000E+40	1.000E+40	1.133E+02
1.000E+40	1.000E+40	1.000E+40	5.264E+01	1.000E+40	1.000E+40	4.518E+00
	Copper 1.000E+40 1.000E+40 1.000E+40	Copper Zinc 1.000E+40 1.000E+40 1.000E+40 1.000E+40 1.000E+40 1.000E+40	Copper Zinc Cadmium 1.000E+40 1.000E+40 1.000E+40 1.000E+40 1.000E+40 1.000E+40 1.000E+40 1.000E+40 1.000E+40	Copper Zinc Cadmium Pyrene 1.000E+40 1.000E+40 1.000E+40 1.000E+40 1.000E+40 1.000E+40 1.000E+40 1.000E+40 1.000E+40 1.000E+40 1.000E+40 1.000E+40	Copper Zinc Cadmium Pyrene Fluoranthene 1.000E+40 1.000E+40 1.000E+40 1.000E+40 1.000E+40 1.000E+40 1.000E+40 1.000E+40 1.000E+40 1.000E+40 1.000E+40 1.000E+40 1.000E+40 1.000E+40 1.000E+40	Copper Zinc Cadmium Pyrene Fluoranthene Anthracene 1.000E+40 1.000E+40 1.000E+40 1.000E+40 1.000E+40 1.000E+40 1.000E+40 1.000E+40 1.000E+40 1.000E+40 1.000E+40 1.000E+40 1.000E+40 1.000E+40 1.000E+40 1.000E+40 1.000E+40 1.000E+40 1.000E+40

Compared with source concentrations in mg/kg

5.473E+01 2.073E+02 8.756E-02 2.840E-01 2.725E-01 1.740E-02 7.682E-02

Pollutant Linkage: EDB, Unsaturated Zone, Saturated Zone, Groundwater Dilution Factor

1.000E+00 for all species and timeslices

Pollutant Linkage: EDB, Unsaturated Zone, Saturated Zone, Groundwater Attenuation Factor

Time(years)	Species1	Species2	Species3	Species4	Species5	Species6	Species7
	Copper	Zinc	Cadmium	Pyrene	Fluoranthene	Anthracene	Phenanthrene
0.1	1.000E+40) 1.000E+40	1.000E+40	1.000E+40	1.000E+40	1.000E+40	1.000E+40
1	1.000E+40) 1.000E+40	1.000E+40	1.000E+40	1.000E+40	1.000E+40	1.000E+40
10	1.000E+40) 1.000E+40	1.000E+40	1.363E+15	3.015E+12	1.026E+07	1.084E+05
100	1.000E+40) 5.933E+05	1.645E+16	1.548E+04	2.657E+08	1.553E+06	4.322E+03

Saved 26/07/2023: 14:45:15 Level Number: 2

BREAKTHROUGH RESULTS

Level 2 Pollutant Linkage: EDB, Unsaturated Zone, Saturated Zone, Groundwater Concentrations in mg/L in Groundwater

Compared with EAL target concentration in mg/L									
	2.000E+00	5.000E+00	5.000E-03	5.000E-06	5.000E-06	5.000E-05	5.000E-06		
Time(years)	Species1	Species2	Species3	Species4	Species5	Species6	Species7		
	Copper	Zinc	Cadmium	Pyrene	Fluoranthene	Anthracene	Phenanthrene		
1000	7.798E-34	6.160E-01	2.282E-05	2.702E-08	2.089E-12	4.765E-11	8.502E-08		
1500	3.263E-23	6.795E-01	6.208E-05	2.702E-08	2.089E-12	4.765E-11	8.502E-08		
2000	6.814E-18	6.874E-01	8.983E-05	2.702E-08	2.089E-12	4.765E-11	8.502E-08		
1000	7.798E-34	6.160E-01	2.282E-05	2.702E-08	2.089E-12	4.765E-11	8.502E-08		

Pollutant Linkage: EDB, Unsaturated Zone, Saturated Zone, Groundwater Remedial Target Concentrations in mg/kg in EDB

Time(years)	Species1 Copper	Species2 Zinc	Species3 Cadmium	Species4 Pyrene	Species5 Fluoranthene	Species6 Anthracene	Species7 Phenanthrene
1000	1.000E+40	1.682E+03	1.919E+01	5.255E+01	1.000E+40	1.000E+40	4.518E+00
1500	1.000E+40	1.525E+03	7.053E+00	5.255E+01	1.000E+40	1.000E+40	4.518E+00
2000	1.000E+40	1.508E+03	4.874E+00	5.255E+01	1.000E+40	1.000E+40	4.518E+00
1000	1.000E+40	1.682E+03	1.919E+01	5.255E+01	1.000E+40	1.000E+40	4.518E+00
Compared with	n source concent	trations in mg/kg	5				
	5.473E+01	2.073E+02	8.756E-02	2.840E-01	2.725E-01	1.740E-02	7.682E-02

Pollutant Linkage: EDB, Unsaturated Zone, Saturated Zone, Groundwater Dilution Factor

1.000E+00 for all species and timeslices

Pollutant Linkage: EDB, Unsaturated Zone, Saturated Zone, Groundwater Attenuation Factor

Time(years)	Species1	Species2	Species3	Species4	Species5	Species6	Species7
	Copper	Zinc	Cadmium	Pyrene	Fluoranthene	Anthracene	Phenanthrene
1000	5.097E+30	1.118E+00	5.110E+00	1.546E+04	2.657E+08	1.553E+06	4.322E+03
1500	1.218E+20	1.013E+00	1.878E+00	1.546E+04	2.657E+08	1.553E+06	4.322E+03
2000	5.832E+14	1.002E+00	1.298E+00	1.546E+04	2.657E+08	1.553E+06	4.322E+03
1000	5.097E+30	1.118E+00	5.110E+00	1.546E+04	2.657E+08	1.553E+06	4.322E+03